

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

SOFTWARE COMMUNICATIONS ARCHITECTURE
(SCA) COMPLIANT SOFTWARE DEFINED RADIO

DESIGN FOR IEEE 802.16 WIRELESSMAN-OFDMTM
TRANSCEIVER

by

Kian Wai, Low

December 2006

 Thesis Advisor: Frank Kragh
 Second Reader: Clark Robertson

Approved for public release, distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Software Communications Architecture (SCA)
Compliant Software Defined Radio Design for IEEE 802.16 Wirelessman-OFDMTM
Transceiver
6. AUTHOR(S) Low Kian Wai

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Demands for seamless mobile communications are driving the research and development of software defined radio

(SDR), which enables a single terminal to transmit and receive in distinct wireless systems through a simple change in software
to reconfigure the terminal’s functions. Its application areas include military use, home networks, intelligent transport systems
and cellular communications. Several SDR software architectures have been developed during the last few years. One
implementation of the Software Communications Architecture is the Open Source SCA Implementation::Embedded (OSSIE)
which is developed by the Mobile and Portable Radio Research Group (MPRG) at Virginia Tech. The goal of this thesis was to
design and implement transmitter and receiver components using OSSIE. The components were designed for use in the IEEE
802.16 WirelessMAN-OFDMTM transceiver and for contribution to the library of components being developed. Thus, the
components will be flexible and useful for other transceivers by specifying the appropriate parameters.

15. NUMBER OF
PAGES

98

14. SUBJECT TERMS
Software Defined Radio, OSSIE, Software Communications Architecture, IEEE 802.16.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release, distribution is unlimited

SOFTWARE COMMUNICATIONS ARCHITECTURE (SCA) COMPLIANT
SOFTWARE DEFINED RADIO DESIGN FOR IEEE 802.16 WIRELESSMAN-

OFDMTM TRANSCEIVER

Kian Wai, Low
Major, Republic of Singapore Air Force

B.Eng (EE) (Hons)., Nanyang Technological University, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 2006

Author: Kian Wai, Low

Approved by: Frank Kragh

Thesis Advisor

Clark Robertson
Second Reader

Jeffrey B.Knorr
Chairman, Department of Electrical and Computer Engineering

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Demands for seamless mobile communications are driving the research and

development of software defined radio (SDR), which enables a single terminal to

transmit and receive in distinct wireless systems through a simple change in software to

reconfigure the terminal’s functions. Its application areas include military use, home

networks, intelligent transport systems and cellular communications. Several SDR

software architectures have been developed during the last few years. One

implementation of the Software Communications Architecture is the Open Source SCA

Implementation::Embedded (OSSIE) which is developed by the Mobile and Portable

Radio Research Group (MPRG) at Virginia Tech. The goal of this thesis was to design

and implement software defined radio transmitter and receiver components using OSSIE.

The components were designed for use in the IEEE 802.16 WirelessMAN-OFDMTM

transceiver and for contribution to the library of components being developed. Thus, the

components will be flexible and useful for other transceivers by specifying the

appropriate parameters.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. INTRODUCTION..1
B. THESIS OBJECTIVE...1
C. THESIS OUTLINE..2

II. BACKGROUND ..3
A. SOFTWARE DEFINED RADIO ...3

1. What Is a Software Defined Radio? ...3
2. Benefits of a Software Defined Radio...4

B. IEEE 802.16 WIRELESSMANTM Standard ...5
1. Broadband Wireless Access ..5

a. Benefits ..5
b. Architecture...6

2. Overview of IEEE 802.16 WirelessMANTM Standard......................7
a. General Specifications ..7
b. Project Development Milestones ..8

3. IEEE 802.16 WirelessMAN-OFDMTM Physical Layer8
a. OFDM Symbol Description ..8
b. Channel Coding ..9
c. Randomization ..9
d. Forward Error Correction..10
e. Interleaving ...12
f. Modulation ..13
g. Pilot Modulation ...14

C. SUMMARY ..5

III. SOFTWARE DESIGN ENVIRONMENT ..17
A. SOFTWARE ARCHITECTURE...17

1. Software Communications Architecture (SCA)..............................17
2. Common Object Request Broker Architecture (CORBA)18

B. OPEN SOURCE SCA IMPLEMENTATION::EMBEDDED (OSSIE) ...19
C. WAVEFORM DEVELOPMENT...19
D. OSSIE WAVEFORM DEVELOPER (OWD) ..20

1. File and Directory Structure...20
2. XML Domain Profile ...21
3. C++ Code ..22

E. SUMMARY ..5

IV. SOFTWARE DEVELOPMENT ..25
A. APPROACH...25

1. Incremental Development Model ...25
B. CONSIDERATIONS ...27

1. Assumptions ...27
2. Functionality...28
3. Reusability and Reconfigurability..29

viii

4. Constraints..29
C. WAVEFORM DESIGN...30
D. COMPONENT DESIGN...32

1. Transmitter...33
a. Randomizer..33
b. Convolutional Encoder ...34
c. Interleaver ...35
d. BPSK Symbol Mapper ..35
e. QPSK Symbol Mapper ..36
f. 16-QAM Symbol Mapper ..36
g. 64-QAM Symbol Mapper ..37
h. Insert Guard Subcarriers..37
i. Insert Pilot Tone and DC Null Subcarriers38
j. Inverse Fast Fourier Transform (IFFT)38
k. Insert Cyclic Prefix ...39

2. Receiver...40
a. De-randomizer...40
b. Convolutional Decoder ...41
c. De-interleaver..43
d. BPSK Symbol De-mapper...44
e. QPSK Symbol De-mapper...44
f. 16-QAM Symbol De-mapper ..45
g. 64-QAM Symbol De-mapper ..45
h. Remove Guard Subcarriers ..45
i. Remove Pilot Tone and DC Null Subcarriers........................46
j. Fast Fourier Transform (IFFT) ..47
k. Remove Cyclic Prefix ..48

E. SUMMARY ..5

V. SOFTWARE TESTS AND RESULTS ..51
A. TEST METHODOLOGY ...51
B. RESULTS ...54

1. Functionality...54
2. Reusability and Reconfigurability..55

C. SUMMARY ..5

VI. ADDITIONAL WORK ...61
A. MULTI-MODE OPERATIONS WAVEFORM DESIGN.........................61
B. MULTI-MODE OPERATIONS COMPONENT DESIGN.......................63
C. TESTS AND RESULTS ..65
D. SUMMARY ..5

VII. CONCLUSIONS AND RECOMMENDATIONS...69
A. CONCLUSIONS ..69
B. RECOMMENDATIONS FOR FUTURE WORK......................................69

LIST OF REFERENCES..71

INITIAL DISTRIBUTION LIST ...73

ix

LIST OF FIGURES

Figure 1. The ideal software radio architecture...3
Figure 2. A typical practical software radio architecture. ...4
Figure 3. Fixed broadband wireless access (From [11]). ..6
Figure 4. OFDM symbol time structure (From [10]). ...8
Figure 5. OFDM frequency description (From [10]). ...9
Figure 6. PRBS generator for data randomization (From [10]).10
Figure 7. Convolutional encoder of rate 1/2 (From [10])..11
Figure 8. BPSK, QPSK, 16-QAM and 64-QAM constellations (From [10]).14
Figure 9. PRBS for pilot modulation (From [10])...15
Figure 10. SCA Core Framework IDL relationships (From [17]).18
Figure 11. OWD generated directory layout (From [20]). ..20
Figure 12. Incremental Development Model (After [22])...26
Figure 13. Assumed SDR architecture design...28
Figure 14. Conceptual waveform design...31
Figure 15. Working transmitter waveform design. ...31
Figure 16. Working receiver waveform design...31
Figure 17. Functional architecture of the OWD auto-generated C++ code.32
Figure 18. Functional description of component randomizer_802_16.34
Figure 19. Functional description of component CC_encoder_802_16.35
Figure 20. Functional description of component interleaver_802_16.35
Figure 21. Functional description of component bpsk_mod_802_16.36
Figure 22. Functional description of component guardIns_802_16.37
Figure 23. Functional description of component ptIns_802_16..38
Figure 24. Functional description of component Data_IFFT (After [22]).39
Figure 25. Functional description of component cpIns_802_16.40
Figure 26. Functional description of component derandomizer_802_16.41
Figure 27. Functional description of component Data_conv_dec (After [22]).................42
Figure 28. Functional description of function initialize_viterbi within Component

Data_conv_dec (From [22]). ...42
Figure 29. Functional description of function process_viterbi within component

Data_conv_dec (From [22]). ...43
Figure 30. Functional description of component deinterleaver_802_16.43
Figure 31. Functional description of component bpsk_demod_802_16............................44
Figure 32. Functional description of component qpsk_demod_802_16............................45
Figure 33. Functional description of component guardRem_802_16.46
Figure 34. Functional description of component ptRem_802_16.47
Figure 35. Functional description of component Data_FFT (After [22]).........................48
Figure 36. Functional description of component cpRem_802_16.....................................48
Figure 37. Software test methodology. ...52
Figure 38. Set-up for testing a transmitter component. ...52
Figure 39. An example of set-up for testing a receiver component.53
Figure 40. An example of set-up for testing an incremented waveform...........................53

x

Figure 41. An example of a SDR component description file. ...56
Figure 42. An example of data handling within a component. ...58
Figure 43. Conceptual waveform design for multi-mode operations................................62
Figure 44. Working model of a multi-mode operations waveform...................................63
Figure 45. Functional Description of SelectorReal_3Out. ..64
Figure 46. Script of test results for a multi-mode operations capable waveform.66

xi

LIST OF TABLES

Table 1. Air interface nomenclature (From [10]). ...7
Table 2. OFDM symbol parameters (From [10])...9
Table 3. The inner convolutional code with puncturing configuration (From [10])......11
Table 4. Mandatory channel coding per modulation (From [10]).12
Table 5. SCA development environment comparison (From [20]).20
Table 6. OWD generated waveform files (From [20]). ...21
Table 7. OWD generated component files (From [20])...21
Table 8. An example of an IEEE 802.16 test case (From [10]).54

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

First and foremost, I would like to give thanks to my Lord and Saviour, Jesus

Christ for His grace and blessings that made all this possible. I must thank my wonderful

wife, Tricia, who has supported and taken good care of me while I toil away in this thesis.

I would like to thank my thesis advisor, Assistant Professor Frank Kragh for the thesis

opportunity, and his kind understanding and patience with me. I would also like to thank

Professor Clark Robertson for his good instruction on the necessary knowledge fields that

helped prepare me for this thesis. Finally, I am also grateful to my organization, the

Republic of Singapore Air Force, for giving me this opportunity to study at the Naval

Postgraduate School.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

EXECUTIVE SUMMARY

Demands for seamless mobile communications are driving the research and

development of software defined radio (SDR), which enables a single terminal to

transmit and receive in distinct wireless systems through a simple change in software to

reconfigure the terminal’s functions. Its application areas include military use, home

networks, intelligent transport systems and cellular communications.

The SDR technology allows radio systems to be dynamically reprogrammed to

support new air interface standards or to provide new features and capabilities to the

radio while in service. The benefit of SDR lies in its ability to support interoperation of a

single radio device on multiple radio networks. The flexibility and reconfigurability of

the SDR enables the radio architecture to support new waveform standards as they

emerge.

The Software Communications Architecture (SCA) is an open architecture

framework that specifies the structure and operations within a SDR. It is a requirements

specification for the design of the SDR. Despite its origins in the military domain, the

SCA has also been widely accepted in commercial applications [5][6]. Several SDR

software architectures have been developed during the last few years. One

implementation of the SCA is the Open Source SCA Implementation::Embedded

(OSSIE) which is developed by the Mobile and Portable Radio Research Group (MPRG)

at Virginia Tech [7].

OSSIE is a C++-based open source implementation of the SCA. Still a beta

version release, the software also comes with a tool called the OSSIE Waveform

Developer (OWD) for the rapid development of the SDR components and application

waveforms. An evolving library of SDR components is also available on the MPRG’s

website. [7]

The goal of this thesis is to design and implement software defined radio

transmitter and receiver components using OSSIE. The components will be designed for

use in an IEEE 802.16 WirelessMAN-OFDMTM transceiver and for contribution to the

library of components being developed. Thus the components will be flexible and useful

xvi

for other transceivers by specifying the appropriate parameters. For this thesis, the SDR

waveforms and components were built using OSSIE version 0.5.0 that implements

version 2.2.1 of the SCA standard.

This research was the first attempt to use OSSIE to implement a SDR transceiver

for the IEEE 802.16 standard so the software radio components were designed from

scratch . Thus, the Incremental Development Model was adopted as a software process

model to structure the development of the software components. The intent is to develop

the application waveform, which comprises of SDR components, incrementally and

systematically [21]. The process starts with a simple implementation of a subset of the

software requirements, in this case the SDR components, and iteratively enhances the

evolving versions until the full system, i.e. the SDR application waveform, is

implemented. The incremental development model consists of three stages: Design,

Develop and Verify [22].

Several considerations drive the design of the SDR components. These

considerations are translated from the objectives of this thesis. These considerations

affect the decisions that drive the subsequent design of the SDR components. They are:

• Assumptions on the hardware platform that runs the software as well as

provide the RF front-end of the system. The software design assumes that the

incoming signal to the waveform consist of frequency down-converted to the

complex baseband, discrete samples.

• Functionality of the IEEE 802.16 WirelessMAN-OFDMTM standard, which is

applicable to licensed bands from 2 to 11GHz, upon which this thesis will

concentrate. This refers to a basic single-mode configuration of the physical

layer.

• Reusability and reconfigurability of the software components which should be

useful in the library for building other waveforms with minimal or no

amendments needed. This requires the components to be simple and

elementary such that they are single-functioned and have generic port

interfaces.

xvii

• Constraints of OSSIE 0.5.0 being a beta version at the time of this thesis work

where a single port interface of a component is not allowed to have multiple

connections to other components. Also, a common buffer for each component

is used for data transactions through multiple input port interfaces of the same

type. There is an additional constraint to the testing of the developed SDR

components given that the interface to the hardware RF front-end will not be

implemented in this thesis.

The transmitter and receiver waveform were broken down into simple and

elementary components listed in the following as associated pairs:

• Randomizer and de-randomizer

• Convolutional encoder and Viterbi decoder

• Interleaver and de-interleaver

• BPSK symbol mapper and symbol de-mapper

• QPSK symbol mapper and symbol de-mapper

• 16-QAM symbol mapper and symbol de-mapper

• 64-QAM symbol mapper and symbol de-mapper

• Insert and remove guard subcarriers

• Insert and remove pilot tone and DC null subcarriers

• Fast Fourier Transform and Inverse Fast Fourier Transform

• Insert and remove Cyclic Prefix

A test case is available in the IEEE 802.16 standard document to validate the

functionality of the individual components. The SDR transmitter components were first

tested individually with the results verified against the test case to validate their

functionality. Having successfully tested and validated the transmitter component, the

corresponding receiver component would then be tested against this transmitter

component. Following the successful tests of the components, they would then be

integrated into the waveform as increments and be tested as a waveform.

xviii

All basic transmitter and receiver components required to build the waveform

compliant to the physical layer of the IEEE 802.16 WirelessMAN-OFDM, except the

Reed-Solomon encoder and decoder, were tested and had their functionality validated

successfully. This does not include functions of phase synchronization, fading mitigation,

and multiple antennae reception.

The SDR components developed in this thesis were designed with a strong

emphasis on reusability and reconfigurability. The following describes the features

incorporated into the design of the components that strives to achieve these traits:

• Documentation with proper commentary in the software source code and a

description file for each component that details the general parameters

relevant to understanding the component’s structural design.

• Proper naming convention of each component that will allow in the library,

where applicable, multiple components of the same function but different

attributes. This alleviates the need to change parameters, which incurs

recompilation of the component, to accommodate different waveforms.

• Dynamic data size handling of each component enabling them to

accommodate waveforms with different data size requirements.

• Elementary and single-function design that enables the components to serve as

basic building blocks in building any waveform.

• Generic port interface configuration design where only data port interfaces

were provisioned for that will alleviate complexity in waveform design.

As additional design work in this thesis, multimode operations were explored

using a waveform design which uses simple and reusable components having the traits

above. The waveform consists of multiple subsets that encompass different modes of

operations. A selector that precedes these waveform subsets receives control information

and routes the received signal to the appropriate waveform subset. A receiver at the end

of these waveform subsets receive the processed data stream and extracts control

information from the header and feeds it back to the selector.

xix

The main purpose of the experiment was to test the synchronization of the signal

flow among the components which was critical to rendering the design feasible for multi-

mode operations. The waveform was constructed in OSSIE Waveform Developer (OWD)

and tested successfully demonstrating that multi-mode operations within a waveform is

feasible without compromising the reusability of the components. The waveform can be

reconfigured with different profiles easily.

xx

THIS PAGE INTENTIONALLY LEFT BLANK

xxi

LIST OF SYMBOLS, ACRONYMS, AND/OR ABBREVIATIONS

ADC Analog to Digital Converter
ADSL Asynchronous Digital Subscriber Line
ASIC Application Specific Integrated Circuit
BWA Broadband Wireless Access
BS Base Station
CORBA Common Object Request Broker Architecture
COTS Commercially Off-The-Shelf
CF Core Framework
CP Cyclic Prefix
DAC Digital to Analog Converter
DL Downlink
DSP Digital signal processor
FDD Frequency Division Duplexing
FEC Forward Error Correction
FFT Fast Fourier Transform
FPGA Field programmable gate-arrays
IDL Interface Definition Language
IF Intermediate Frequency
IFFT Inverse Fast Fourier Transform
JTRS Joint Tactical Radio System
LNA Low Noise Amplifier
LO Local Oscillator
MAC Medium Access Control
MP-MP Multipoint-to-Multipoint
NLOS No Line-Of-Sight
OE Operating Environment
OMG Object Management Group
ORB Object Request Broker
OSSIE Open Source SCA Implementation::Embedded
OWD OSSIE Waveform Developer
PMP Point-to-Multipoint
PRBS Pseudo Random Binary Sequence
RF Radio Frequency
RS Repeater Station
SCA Software Communications Architecture
SDR Software Defined Radio
SS Subscriber Station
TDD Time Division Duplexing
TE Terminal Equipment
UL Uplink
UML Unified Modeling Language
WDE Waveform Development Environment
XML Extensible Markup Language

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. INTRODUCTION
Software defined radio (SDR) is basically a radio implemented in software.

Ideally, the communication signal is all processed in software within an SDR. This

enables a reconfigurable system architecture for wireless networks and user terminals. A

strong motivation for SDR technology is that it enables building of multi-mode, multi-

band and multi-functional wireless devices that can be improved simply via software

upgrades without need to recall hardware units [1].

One of the first software defined radio architectures was the SPEAKeasy system,

initiated in the early 1990’s by the US Air Force and eventually turning into a joint effort

by the US military branches [3]. However, an important milestone in the proliferation of

SDR is the US Department of Defense Joint Tactical Radio System (JTRS) project

started in 1990’s to develop a common programmable and multi-functional radio system

that can be used for communication among all the Services [4]. The JTRS program

developed an open Software Communications Architecture (SCA) which is an open

architecture framework that specifies the operations within a SDR. Despite its origins in

the military domain, the SCA has been widely accepted in commercial applications

[5][6].

Open Source SCA Implementation::Embedded (OSSIE) is a C++-based open

source implementation of the SCA. Still a beta version release, the software also comes

with a tool called the OSSIE Waveform Developer (OWD) for the rapid development of

the SDR components and application waveforms. An evolving library of SDR

components is also available on the Mobile and Portable Radio Research Group’s

(MPRG) website. [7]

B. THESIS OBJECTIVE
The objective of this thesis is to develop components of a software defined radio

receiver using OSSIE. The components shall be compliant to the physical layer of the

IEEE 802.16 WirelessMan-OFDMTM standard. The components shall also contribute to

2

the library that will serve as a repository from which components can be retrieved to

build other transceivers. Thus, the components shall be designed such that they are easily

reusable and reconfigurable.

C. THESIS OUTLINE
The organization of the thesis is as follows: Chapter II elaborates on the Software

Defined Radio as a system, its benefits and challenges in implementation. The chapter

also introduces the IEEE 802.16 WirelessMANTM standard as a concept before

elaborating on the physical layer of the IEEE 802.16 WirelessMAN-OFDMTM. Chapter

III elaborates on the design environment for the development of the transceiver

components in software. Chapter IV elaborates on the approach and considerations in the

software design of the transceiver components. The chapter also presents the design

algorithm of the transceiver components. Chapter V elaborates the methodology for test

and verification of the transceiver components. The chapter then presents the test and

verification results with respect to the component functionality. The chapter also presents

the design features with respect to ensuring component reusability. Lastly, Chapter VI

concludes the thesis and highlights future work.

II. BACKGROUND

A. SOFTWARE DEFINED RADIO

1. What is a Software Defined Radio?
The term software radio, used interchangeably with software defined radio, is

basically a radio implemented in software. In other words, the communication signal is

sampled and processed digitally within a radio. For the receiver, the hardware consists

firstly of an antenna system that receives wideband communication signals. There would

also be an analog-to-digital converter (ADC) that samples and digitizes the signal.

Processing of the signal from here on would be done in software. The software can be

loaded on any general purpose processors, field programmable gate-arrays (FPGA),

digital signal processors (DSP) and application-specific integrated circuit (ASIC). [8]

Joe Mitola stated that a true software radio places the software, “as close to the

antenna as possible” [9]. In other words, an ideal software radio is one where analogue to

digital conversion takes place immediately after the antennae and all subsequent

processing is carried out in software. Figure 1 shows an ideal software radio where two

antennae are shown. All the main functions are carried out in software including the RF

and IF processing of the signals, followed by the baseband functions such as modulation

and demodulation. The disadvantage of this architecture is that the entire RF spectrum is

converted by the ADC. This imposes very high performance demands on the ADC in

terms of bandwidth, dynamic range and sampling rate. Current signal conversion

technology is not established to realize such an ideal SDR as yet.

ADC

DAC

Digital RF
& IF

Processing

Baseband
signal

Processing

ADC

DAC

Digital RF
& IF

Processing

Baseband
signal

Processing
Figure 1. The ideal software radio architecture.

3

Conventionally, a practical software defined radio is implemented with analog RF

front-end circuitry as shown in Figure 2. The analog signal is down-converted to IF

before being digitized by the ADC for follow-on processing in software. The main

challenge therefore in progressing towards the ideal software radio architecture lays in

the realization of fast, wide-band, high-resolution and economical ADC and DAC.

ADC

DAC

Analog RF
& IF

Processing

Baseband
signal

Processing

ADC

DAC

Analog RF
& IF

Processing

Baseband
signal

Processing
Figure 2. A typical practical software radio architecture.

2. Benefits of a Software Defined Radio
In his book, Software Radio: A Modern Approach to Radio Engineering, Dr.

Jeffrey Reed summarized with five factors that are expected to push wider acceptance of

software radio [2].

a. Multifunctionality
The same piece of hardware i.e. the radio set can be used to transmit,

receive and process different communication signals that adhere to different air interface

standards. This can be done simply be reconfiguring the software.

b. Global Mobility
The same piece of hardware i.e. the radio set can be used in different parts

of the world that endorse different air interface standards. This can again be done simply

be reconfiguring the software.

c. Compactness and Power Efficiency

4

Unlike traditional non-SDR systems which require multiple hardware sets

for multi-functional communication, the same piece of SDR hardware can be reused for

such a purpose. This results in a compact and power-efficient design, especially as the

number of systems increases.

5

d. Ease of Manufacture
A SDR comprises of fewer hardware parts than a traditional radio since

most processing is done in software within a general purpose microprocessors or special

purpose microprocessors like the DSP, or in reconfigurable hardware including FPGAs.

This eases the production cycle for the manufacturer with lesser parts to standardize and

produce.

e. Ease of Upgrades
Any service upgrade can be easily introduced through the release of new

software versions without the expense of recalling or replacing the hardware units. A user

can simply download the software off the internet and load it into the SDR.

B. IEEE 802.16 WIRELESSMANTM Standard

1. Broadband Wireless Access
Broadband Wireless Access (BWA) is a technology aimed at providing high-

speed wireless access over a wide area from devices such as personal computers to data

networks. According to the IEEE 802.16-2004 standard, broadband means having

instantaneous bandwidth greater than around 1 MHz and supporting data rates greater

than about 1.5 Mbit/s [10].

a. Benefits
BWA has become the best way to meet increasing demand for fast internet

connection and integrated data, voice and video services. In addition to providing

capacity that supports high data rates, BWA is wireless which enables a faster, more

convenient and easier infrastructure set-up over the wired networks. For the users, BWA

also means a possibility of mobile data communications. [12]

b. Architecture
Fixed BWA systems typically include at least a base station (BS) and a

number of subscriber stations (SS). The BS connects the user SS to a core network. An

uplink connection has the SS transmitting to the BS. The reverse is true for a downlink

connection. Typically a BS uses several directional antennae and employs a sectoring

technique to provide a 360 degree area coverage. Within a given frequency channel and

BS antenna sector, all SS receive the same transmission. As such, the available

bandwidth is shared among the SS users within the coverage area. This can be achieved

through time-division multiple access or frequency-division multiple access. The shared

bandwidth can be distributed via on-demand or fixed allocation methods. A reference

fixed BWA system is shown in Figure 3. [11]

BS

or

RS

RS

SS

SS

SS

SS

SS

TE

TE

TE

TE

TE

TE

TETE
G

F

F G

Inter-cell
link

Inter-cell
link

To core
network(s)

Core
Network(s)

To other
BS

Directional
Antenna

Omni-directional or
sectored antenna

BS

or

RSRS

RSRS

SSSS

SSSS

SSSS

SSSS

SS

TE

TE

TE

TE

TE

TE

TETE
G

F

F G

Inter-cell
link

Inter-cell
link

To core
network(s)

Core
Network(s)

To other
BS

Directional
Antenna

Omni-directional or
sectored antenna

Figure 3. Fixed broadband wireless access (From [11]).

6

2. Overview of IEEE 802.16 WirelessMANTM Standard
The Institute of Electrical and Electronics Engineers Standards Association

(IEEE-SA) sought to make BWA more widely available by developing IEEE Standard

802.16, which specifies the wireless metropolitan area network (WirelessMAN) Air

Interface.

a. General Specifications
IEEE 802.16 focuses on the efficient use of bandwidth between 10 and 66

GHz and also the 2 to 11 GHz region. The standard defines a medium access control

(MAC) layer that supports multiple physical layer specifications customized for the

frequency band of use. The 10 to 66 GHz standard supports licensed frequencies for two-

way Line-Of-Sight (LOS) communications. The 2 to 11 GHz standard supports both

unlicensed and licensed bands without need for LOS communication. [12]

Table 1 summarizes the nomenclature for the various air interface

specifications in this standard.

Designation Applicability PHY
Additional

MAC
requirements

Options Duplexing
alternative

WirelessMAN-SCTM 10-66 GHz 8.1 TDD
FDD

WirelessMAN-SCaTM Below 11 GHz
licensed bands

8.2 AAS (6.3.7.6)
ARQ (6.3.4)
STC (8.2.1.5.3)

TDD
FDD

WirelessMAN-OFDMTM Below 11 GHz
licensed bands

8.3 AAS (6.3.7.6)
ARQ (6.3.4)
Mesh (6.3.6.6)
STC (8.3.8)

TDD
FDD

WirelessMAN-OFDMA Below 11 GHz
licensed bands

8.4 AAS (6.3.7.6)
ARQ (6.3.4)
STC (8.4.8)

TDD
FDD

WirelessHUMANTM Below 11 GHz
licensed-exempt
bands

[8.2, 8.3,
or 8.4]
and 8.5

DFS (6.3.15) AAS (6.3.7.6)
ARQ (6.3.4)
Mesh (6.3.6.6)
(with 8.3 only)
STC (8.2.1.4.3/
8.3.8/8.4.8)

TDD

Table 1. Air interface nomenclature (From [10]).

7

b. Project Development Milestones
The first 802.16 standard, named IEEE Std 802.16-2001, was approved in

December 2001 followed by two amendments which were the IEEE Std 802.16a and

IEEE Std 802.16c. These were later superseded and made obsolete in 2004 by IEEE Std

802.16-2004. An amendment to the IEEE Std 802.16-2004 was concluded in 2005 with

IEEE 802.16-2005 which addresses mobility. [13]

The works of this thesis is based on the active IEEE Std 802.16-2004

standard that supports fixed broadband wireless access.

3. IEEE 802.16 WirelessMAN-OFDMTM Physical Layer
The physical layer for the WirelessMAN-OFDM is defined in the IEEE 802.16-

2004 standard, employs OFDM modulation and is designed for NLOS operation in the

frequency bands below 11 GHz [10]. This section discusses the details of the IEEE

802.16 WirelessMAN-OFDMTM physical layer, as found in [10].

a. OFDM Symbol Description
The Inverse-Fast Fourier-Transform (IFFT) is used to create an OFDM

waveform. A Cyclic Prefix (CP), which is a duplicate of the last section of the useful

OFDM symbol, is required as shown in Figure 4 to protect against multipath

interferences while maintaining the orthogonality of the tones. Defining G as the ratio of

CP time to useful time (i.e. Tg/Tb), the standard specifies possible G values of 1/4, 1/8,

1/16 and 1/32. [10]

Figure 4. OFDM symbol time structure (From [10]).

8

An OFDM symbol (see Figure 5) is made up of two hundred and fifty-six

subcarriers. This determines the FFT size to be used. Within an OFDM symbol, there are

two hundred data subcarriers, eight pilot subcarriers, a DC null, twenty eight lower

frequency guard subcarriers and twenty seven high frequency guard subcarriers. [10]

Figure 5. OFDM frequency description (From [10]).

The frequency offset indices of the subcarriers in an OFDM symbol are

shown in Table 2.

Parameter Value
Frequency offset indices of
guard null subcarriers -128,-127,…,-101 +101,+102,…,127
Frequency offset indices of
pilot subcarriers -88,-63,-38,-13,13,38,63,88

Frequency offset indices of
data subcarrier

-100..-89,-87..-64,-62..-39,-37..-14,-12..-1
+1..12,14..37,39..62,64..87,89..100

Frequency offset indices of
DC null subcarrier 0

Table 2. OFDM symbol parameters (From [10]).

b. Channel Coding
Channel coding specified in this standard comprises of, in the order for

transmission, randomizing, forward error correction encoding and interleaving the data.

For the receiver, the operations shall be applied in the reverse order. [10]

c. Randomization
Randomization shall be performed on each burst of data on the downlink

and uplink except the preamble. Randomizing shall be reset with each OFDM symbol. If

the amount of data to transmit does not fit exactly the amount of data allocated for an

OFDM symbol, fixed with two hundred and fifty-six subcarriers, based on the selected
9

coding rate and modulation type, padding of logic ones shall be added to the end of the

transmission block. For example, if the overall coding rate of 1/2 and a QPSK modulation

are selected, the data allocated will be one hundred and eighty-four information bits. This

is derived from one hundred and ninety-two data subcarriers allocated for an OFDM

symbol. The QPSK modulation will allow two encoded bits per subcarrier. The encoding

will restrict the randomized data to half the size of the encoder output. Of these

randomized data, eight tail bits are to be reserved for the encoder to pad the data stream

with logical zeroes. [10]

The pseudo random binary sequence (PRBS) generator as shown in Figure

6, shall be designed based on the polynomial 1 + X14 + X15. The shift-register of the

randomizer shall be initialized with 100101010000000 for each OFDM symbol. Each

data block to be transmitted shall enter sequentially into the randomizer, MSB first. [10]

Figure 6. PRBS generator for data randomization (From [10]).

d. Forward Error Correction

The FEC specified in this standard consists of a concatenation of a Reed–

Solomon outer code and a rate-adjustable convolutional inner code. At the transmitter,

data shall first be encoded with the Reed-Solomon code before going through the

convolutional encoder. [10]

The Reed-Solomon coding is not discussed here as it was not implemented

in this thesis. For the convolutional encoder, it shall have a basic rate of 1/2 and a

constraint length of seven. The generator is shown in Figure 7 where the generator

polynomials for output X and Y are 1 + X + X2 + X3 + X6 and 1 + X2 + X3 + X5 + X6 ,

respectively. [10]

10

Figure 7. Convolutional encoder of rate 1/2 (From [10]).

Table 3 shows the puncturing patterns used to derive the different code

rates. X precedes Y in the order of output. In the table, a “1” means a transmitted bit and

“0” denotes a removed bit. For example, to achieve a code rate of 2/3, every third bit of

the serial output stream is omitted for transmission. This equates to omitting the alternate

bit of output X. [10]

Rate 1/2 2/3 3/4 5/6
d free 10 6 5 4
X 1 10 101 10101
Y 1 11 110 11010
XY X 1Y 1 X 1Y 1Y2 X 1Y 1Y 2X 3 X 1Y 1Y 2X 3Y 4X 5

Code rates

Table 3. The inner convolutional code with puncturing configuration (From [10]).

Table 4 shows the block sizes used for the different modulations and code

rates.

11

Modulation Uncoded block size
(bytes)

Coded block
size (bytes)

Overall
coding rate RS code CC code

rate
BPSK 12 24 1/2 (12,12,0) 1/2
QPSK 24 48 1/2 (32,24,4) 2/3
QPSK 36 48 3/4 (40,36,2) 5/6
16-QAM 48 96 1/2 (64,48,8) 2/3
16-QAM 72 96 3/4 (80,72,4) 5/6
64-QAM 96 144 2/3 (108,96,6) 3/4
64-QAM 108 144 3/4 (120,108,6) 5/6

Table 4. Mandatory channel coding per modulation (From [10]).

e. Interleaving
Interleaving at the transmitter is carried out on all encoded data bits to

guard against burst errors which may be uncorrectable by the FEC decoder at the

receiver. Interleaving is done via two permutations on the incoming coded bits per

OFDM symbol. Parameters necessary for computing the permutations are Ncbps which

denotes the number of incoming coded bits per OFDM symbol, Ncpc which denotes the

number of coded bits per subcarrier, and s which is derived from the computation,

ceil(Ncpc/2). Ncpc is dependent on the type of modulation and equates to 1, 2, 4 or 6 for

BPSK, QPSK, 16-QAM, or 64-QAM modulation respectively. For a coded bit within a

block of Ncbps bits, k represents its index order prior to the first permutation. After the

second permutation, the index order of that same coded bit is denoted as mk while jk is the

index after the second permutation. The interleaved data is then forwarded for

modulation. [10]

The two-step permutation for interleaving are defined as follows:

(1))12/()12/(12mod kfloorkNm cbpsk +⋅= 1,...,1,0 −= cbpsNk

(2))mod())/12(()/(scbpskcbpskkk NmfloorNmsmfloorsj ⋅−++⋅=

1,...,1,0 −= cbpsNk

At the receiver, the de-interleaver carries out the reverse operations. A

two-step permutation is used to re-order the coded bits after demodulation and before

decoding . For a coded bit within a block of Ncbps bits, j represents its index order prior to

the first permutation. After the second permutation, the index order of that same coded bit

12

is denoted as mj while kj is the index of that bit after the second permutation. The de-

interleaved data is then forwarded for decoding. [10]

The two-step permutation for de-interleaving are defined as follows:

(1))mod())/12(()/(scbpsj Njfloorjsjfloorsm ⋅++⋅=

1,...,1,0 −= cbpsNj

(2))/12()1(12 cbpsjcbpsjj NmfloorNmk ⋅⋅−−⋅=

1,...,1,0 −= cbpsNj

The first bit out of the interleaver shall map to the MSB in the

constellation.

f. Modulation
After interleaving, the data bits are to the symbol mapper for modulation.

The constellations for BPSK, Gray-mapped QPSK, 16-QAM, and 64-QAM are shown in

Figure 8. The constellations shall be normalized with the indicated factor c to equalize

average power. b0 is the LSB. [10]

13

Figure 8. BPSK, QPSK, 16-QAM and 64-QAM constellations (From

[10]).

The constellation-mapped data shall then be modulated onto the data

subcarriers of an OFDM symbol in order of increasing frequency offset index via the

inverse fast Fourier transform (IFFT). [10]

g. Pilot Modulation

Pilot subcarriers shall be inserted into the OFDM symbol for channel

estimation. The PRBS generator, of the polynomial X11 + X9 + 1, is shown in Figure 9

and is used to produce a sequence, wk. The initialization sequences that shall be used on

the downlink and uplink are shown in Figure 9 below. BPSK modulation is used for the

pilot subcarrier. The value of each of the eight modulated pilot subcarrier within the

14

OFDM symbol of index k is derived from wk as shown below. The first OFDM symbol is

indexed as k = 0. [10]

(1) Downlink

kwcccc 2188633888 −==== −− , kwcccc 2138131363 −==== −−

(2) Uplink

 kwcccccc 21886338133888 −====== −− , kwcc 211363 −== −−

Figure 9. PRBS for pilot modulation (From [10]).

C. SUMMARY

This chapter presented the relevant background information that is useful for the

understanding of the research. Key concepts presented were of the Software Defined

Radio and the IEEE 802.16 standard. For the latter, the physical layer of the IEEE 802.16

WirelessMAN-OFDMTM was described in detail. The next chapter continues to present

useful background information on the software design environment which includes the

Software Communications Architecture and OSSIE.

15

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. SOFTWARE DESIGN ENVIRONMENT

A. SOFTWARE ARCHITECTURE
At the center of the SDR technology is the software architecture that governs the

structure and operations within the SDR radio. The software architecture of a system

details a collection of components and their interactions among each other [14].

1. Software Communications Architecture (SCA)
Many proprietary architectures exist, but to ensure portability and interoperability

of the protocols on the different radios, an open architecture had to be developed. The

Software Communications Architecture (SCA), developed by the US Department of

Defense JTRS project, is such an architecture. While the SCA was originally intended

solely for military use, it has gained commercial viability due to the efforts of groups like

the Object Management Group (OMG) and the SDR Forum.

The Software Communications Architecture (SCA) is an open architecture

framework that specifies the structure and operations within a SDR. It is a requirement

specifications for the design of the SDR. The interfaces are defined by using the CORBA

Interface Definition Language (IDL), and graphical representations are made by using

Unified Modeling Language (UML) [16]. The operating environment consists of a Core

Framework (CF), a CORBA middleware and an operating system.

 The SCA Core Framework is illustrated in Figure 10. The figure shows the

primary SCA interfaces. A software component communicates with other components

via its interfaces. Definition of these interfaces in the SCA is based on the CORBA

middleware which ensures compatibility of software components in terms of being able

to communicate with each other. The benefit of using a middleware is explained in the

next section.

Figure 10. SCA Core Framework IDL relationships (From [17]).

2. Common Object Request Broker Architecture (CORBA)
Middleware is software that connects two or more software applications with non-

compatible interfaces. With the middleware, different software applications written in

different languages or running on different platforms can interoperate and communicate

transparently. [18]

An example of a middleware is the Common Object Request Broker Architecture

(CORBA) which is OMG's open, vendor-independent architecture and infrastructure that

computer applications use to work together over networks.

In a general sense CORBA “wraps” around code written in some language, with a

standard interface definition [19]. This greatly facilitates interoperability since the

functional code is hidden and only takes care of computation. Two pieces of functional

code written in different programming languages but “wrapped” with CORBA can now

communicate with each other. Therefore CORBA provides the mechanism through which

different software defined radio vendors can develop compatible software and hardware

18

19

interfaces. The users do not have to worry about downloading the correct software for the

SDR since they should all be compatible.

B. OPEN SOURCE SCA IMPLEMENTATION::EMBEDDED (OSSIE)
OSSIE, developed by the Mobile and Portable Radio Research Group (MPRG), is

an open source implementation of the SCA. OSSIE is a C++-based open source

implementation of the SCA. Still a beta version release, the software also comes with a

tool called the OSSIE Waveform Developer (OWD) for the rapid development of the

SDR components and application waveforms. An evolving library of SDR components is

also available on the MPRG’s website. [7]

In this thesis, the SDR waveforms and components were built using OSSIE

version 0.5.0.

C. WAVEFORM DEVELOPMENT
A development environment that automatically prototypes the code structure of

the waveforms and components allows radio designers to better concentrate on the

functional design of the component and waveform. A development environment also

standardizes the code structure which makes it easier for subsequent modifications and

improvement. Some Waveform Development Environments (WDE) feature automatic

code generation where a skeleton code is generated, with the functional code to be added

on. This makes developing a SDR easier since a developer needs only to concentrate on

the functional code design. [20]

There are several WDEs commercially available on the market today that deals

specifically with the SCA. However, unlike the OSSIE Waveform Developer (OWD),

they are all proprietary tools. Table 5 summarizes the major features supported by some

of the commercially off-the-shelf (COTS) available SCA WDEs and compares them to

OWD. [20]

Software Package XML Generation Code Generation Domain Management Free
Harris dmTK Yes No Yes No

Zeligsoft Component Enabler Yes Yes No No
CRC Development Toolset Yes Yes No No

PrismTech Spectra Yes Yes No No
OSSIE Waveform Developer Yes Yes No Yes

Table 5. SCA development environment comparison (From [20]).

D. OSSIE WAVEFORM DEVELOPER (OWD)
The OSSIE Waveform Developer is a form of Graphical User Interface (GUI) that

facilitates the designing of SCA waveforms and components. In addition, the OWD also

generates skeleton C++ code and the utility files necessary to install the components and

waveforms as well as run the application waveform. [20]

The OWD facilitates creation of new SDR components as well as building of a

waveform application using components available in the stored library. In using OWD to

create new SDR components, the basic structure of the component can be designed

within the OWD which will then generate the skeleton C++ code for the component. The

developer can then proceed to fill in the skeleton code with the desired functionality of

that component without having to worry about the SCA-compliant interfaces. [20]

1. File and Directory Structure
Figure 11 shows a typical directory and file layout resulting from waveform

generation using OWD [20].

20
Figure 11. OWD generated directory layout (From [20]).

Tables 6 and 7 list the files that are generated for typical waveforms and

components respectively [20].

File Type
DomainManager.dmd.xml SCA Waveform XML
DomainManager.spd.xml SCA Waveform XML
DomainManager.scd.xml SCA Waveform XML
DomainManager.prf.xml SCA Waveform XML
DeviceManager.dcd.xml SCA Waveform XML
DeviceManager.spd.xml SCA Waveform XML
DeviceManager.scd.xml SCA Waveform XML
DeviceManager.prf.xml SCA Waveform XML
<Waveform Name>.sad.xml SCA Waveform XML
<Waveform Name>_DAS.xml OSSIE Waveform XML
configure.ac Autoconf File
Makefile.am Autoconf File
reconf Autoconf File
aclocal.d Autoconf Directory

Table 6. OWD generated waveform files (From [20]).

File Type
<Component Name>.spd.xml SCA Component XML
<Component Name>.scd.xml SCA Component XML
<Component Name>.prf.xml SCA Component XML
<Component Name>.h OSSIE Component C++
<Component Name>.cpp OSSIE Component C++
main.cpp OSSIE Component C++
port_impl.h OSSIE Port Implementation C++
port_impl.cpp OSSIE Port Implementation C++
configure.ac Autoconf File
Makefile.am Autoconf File
reconf Autoconf File
aclocal.d Autoconf Directory

Table 7. OWD generated component files (From [20]).

2. XML Domain Profile
The XML files that are generated with each waveform and component are integral

to the operation of the radio. As described by the JTRS JPEO, these files “describe the

identity, capabilities, properties, and interdependencies of the hardware devices and

software components that make up the system” [17].

21

22

3. C++ Code
As shown in Table 7, there are five C++ files that are auto-generated for each new

component. These files make up the functionality of a particular component. The

developer needs only to modify these files so as to add the necessary function intended of

the component. The following describes in further detail these files except the main.cpp

file which contains default utility code transparent to the developer and not critical to the

component design in terms of code modifications to add component functionality.

a. Component Name.h
This is a C++ header file with the same name as the component and

contains all of the C++ class definitions for the particular component. Member functions

and port declarations compliant to the SCA are included by default. Necessary constant

declarations representing parameters of the component function can also be included in

this file.

b. Component Name.cpp
This is a C++ implementation file. By default, this file includes the basic

SCA functionality such as getPort, start, stop, releaseObject, the constructor and

destructor for the component. The port interfaces of the component are also instantiated.

Very importantly, this is also the file for the developer to add functions that defines the

SDR component. Member functions can be added to process data according to that

component functionality of the SDR.

c. port_impl.h
This file contains C++ class definitions for each type of port interface used

in the component. Two classes are automatically generated for each port interface on a

component. They are dataIn_<Interface Name>_i and dataOut_<Interface Name>_i.

These are classes that define operations for port communications between components.

23

d. port_impl.cpp
This file contains the C++ implementation of the member functions

defined in the port_impl.h file.

E. SUMMARY
Key concepts presented in this chapter were of the Software Communications

Architecture and OSSIE. For the latter, the OSSIE Waveform Developer was described in

detail. The next chapter will present the process of software development. This includes

the approach and considerations taken before elaborating on the design of the waveform

and components.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. SOFTWARE DEVELOPMENT

A. APPROACH
As the works of this thesis were also the first attempts to use OSSIE to implement

SDR of the IEEE 802.16 standard, there were little or no specific resources to use as

references. The research developed the software radio components from scratch. Thus, a

software process model was adopted to structure the development of the software

components.

1. Incremental Development Model
The intent is to develop the application waveform, which comprises of SDR

components, incrementally and systematically. The process starts with a simple

implementation of a subset of the software requirements, in this case the SDR

components, and iteratively enhances the evolving versions until the full system, i.e. the

SDR application waveform, is implemented. [21]

The incremental development model comprises of three stages: Design, Develop

and Verify. Figure 12 describes the interrelationship between these three stages as a

model and how it corresponds to processes in the software waveform development of the

IEEE 802.16-2004 standard. [22]

a. Design
This stage starts with defining the outline software requirements and

assigning these requirements to the specific increment. Specifically, the overall waveform

design shall be addressed conceptually with respect to the IEEE 802.16-2004 standard

requirement. The conceptual waveform design will then be decomposed into smaller and

fundamental components. These components will be the increments of the model.

Component design will then be addressed from the simplest to the complicated. In this

way, the system software architecture is designed and shall serve as a framework for

actual software development at the next stage.

Figure 12. Incremental Development Model (After [22]).

26

27

b. Develop
This is the actual work of software development and programming,

whereby the system requirements and pseudo-codes are converted to actual software

languages. The coded algorithms are validated incrementally to ensure they meet the

functionality expectations. Successful increments are stored for future use and new

functionalities through design modifications will be introduced for the next increment.

c. Verify
With the incremental development model, the software system design gets

larger and more complex with each iteration. Increments will be integrated in this stage

and the system as a whole will be verified to meet the holistic software requirements. For

this research, the eventual completed system must be able to emulate the IEEE 802.16

WirelessMAN-OFDMTM physical layer.

B. CONSIDERATIONS
Several considerations drive the design of the SDR components. These

considerations are translated from the objectives of this thesis. The following sections

describe these considerations and the decisions that drive the subsequent design of the

SDR components.

1. Assumptions
The SDR, though largely implemented in software still require a hardware

platform to run the software as well as provide for the RF front-end of the system. As the

main focus of the thesis objectives is to create SDR components that will contribute to

the library of components for further development work, speed was not important.

Therefore, the SDR components designed using OSSIE needed only to be run on any

general purpose processor.

The interface to the hardware RF front-end for actual air transmission and

reception is set aside as future work. Nevertheless, an assumption has to be made on the

RF front-end architecture to facilitate the design of the SDR waveform. Figure 13

illustrate the assumed SDR architecture design consisting of both the hardware-

implemented RF front-end and the software-implemented SDR waveform.

2. Functionality
The IEEE 802.16 standard encompasses many features over a wide range of

frequencies to ensure a high quality of service. This thesis concentrates on the IEEE

802.16 WirelessMAN-OFDMTM physical layer standard which uses licensed bands from

2 to 11GHz. The goal of the thesis is to implement SDR components for a basic single-

mode configuration of the physical layer standard. These were explained in Chapter II of

this thesis. In addition, no subchannelizations were considered. In other words, the full

bandwidth would be used. The transceiver design considered was to be for the Subscriber

Station (SS).

ADC

ADC

Digitized
samples

H/W

S/W

FilterLO

Component 1 Component 2 Component n…

SDR Waveform Receiver data flow

Transmitter data flow

ADC

ADC

Digitized
samples

H/W

S/W

FilterLO

Component 1 Component 2 Component n…

SDR Waveform

ADC

ADC

Digitized
samples

H/W

S/W

FilterLO

Component 1 Component 2 Component n…

SDR Waveform Receiver data flow

Transmitter data flow
Figure 13. Assumed SDR architecture design.

28

29

3. Reusability and Reconfigurability
A very important goal of the thesis is that the implemented SDR components be

reusable so that the components can be contributed to a growing active library. The

components should be able to be reused, with little or no amendments, for building other

waveforms. This requires the waveform to be broken down to as many simple and

elementary components as possible. This way, the components can be designed in a way

as generic as possible such that it is single-functioned and not customized to any

waveform standard or profile. The components should also be designed in a way where

their numbers of interfaces are minimized and operations kept simple and rudimentary. In

the case where amendments to the component design are required, the code should be

well-documented so that effort to amend the code can be made easy.

Achieving the above will also enable easy reconfiguration of the waveform. The

waveform can be reconfigured easily without having drastic reconstruction by simply

replacing the generic components with others from the library. In other words, there

should not be any need to build another component with functions customized to the new

configuration when a component with the same fundamental function already exists..

4. Constraints
Firstly, the SDR waveforms and components were built in this thesis using OSSIE

version 0.5.0 which was still a beta version under development. Thus it was important

that there be proper documentation to track the OSSIE version upon which the code for

the SDR components were based. There was a given possibility that code developed

based on previous beta versions of OSSIE may not run on newer beta versions since, at

the developmental stage, the push for an effective final product outweighs the need to

maintain backward compatibility.

Secondly, OSSIE 0.5.0 does not allow a single port interface of a component to

have multiple connections to other components. It’s strictly a one-to-one connection. For

example, Component A cannot be connected via a single output port to inputs of

Component B and C concurrently. Component A needs to have two output ports to be

able to connect to Component B and C.

Thirdly, although OSSIE 0.5.0 allows multiple input port interfaces of the same

type, it should be noted that a common buffer is used to store data transacted through

these ports. For example, Component A may have two input ports of type realShort.

However, data received through these two ports are stored in a common buffer and runs

the risk of overwriting each other. It is thus important to make use of mutexes, which is a

programming variable used to lock resources to prevent sharing, or ensure proper usage

synchronization to avoid unintended data erasure [23].

Fourthly, as the interface to the hardware RF front-end will not be implemented in

this thesis, there is a need to circumvent such that testing of the developed SDR

components will still be effective.

C. WAVEFORM DESIGN
To achieve reusability of the components and easy reconfigurability of the

waveform, the waveform has to be composed of many simple and elementary

components. As such, the transmitter and receiver waveform were designed where the

working model to be implemented was translated from the conceptual model shown in

Figure 14. The waveform design of the transmitter and receiver working models are

shown respectively in Figure 15 and Figure 16.

IFFT/
FFT

Cyclic Prefix
Insert/

Removal

Digitized
Samples

Pilot Tone, DC
Null & Guard

Insert/
Removal

Symbol Mapper/
Demapper

Interleaving/
De-Interleaving

Coding/
Decoding

Randomizer/
De-Randomizer Binary Data

Receiver data flow

Transmitter data flow

IFFT/
FFT

Cyclic Prefix
Insert/

Removal

Digitized
Samples

Pilot Tone, DC
Null & Guard

Insert/
Removal

Symbol Mapper/
Demapper

Interleaving/
De-Interleaving

Coding/
Decoding

Randomizer/
De-Randomizer Binary Data

Receiver data flow

Transmitter data flow

30

Figure 14. Conceptual waveform design.

I&Q Float
#samples

depends on
scale factor

(default=0.25)

I&Q
samples

I&Q Float
#samples/
OFDM sym

as per
input

I&Q Float
#samples/
OFDM sym

= 256

I&Q Float
#samples/
OFDM sym

= 247

I Real
#bits/OFDM sym

as per input
I Real

#bits/OFDM sym
(default=384 for
QPSK & ½ code

rate)

I Real
#bits/OFDM sym

as per input

Insert
Cyclic Prefix IFFT

Insert
Pilot Tone &

DC Null

Insert
Guard

BPSK,QPSK,
16QAM or

64QAM
Symbol Mapper

Interleaver
I&Q Float
#samples/
OFDM sym

=192

Convolutional
Encoder RandomizerReed Solomon

Encoder

I Real
#bits/OFDM sym
(default=768 for
QPSK & ½ code

rate)

I – In-phase Channel, Q – Quadrature Channel

Sym – Symbol

Float – Real data format

Real – Integer data format

I&Q Float
#samples

depends on
scale factor

(default=0.25)

I&Q
samples

I&Q Float
#samples/
OFDM sym

as per
input

I&Q Float
#samples/
OFDM sym

= 256

I&Q Float
#samples/
OFDM sym

= 247

I Real
#bits/OFDM sym

as per input
I Real

#bits/OFDM sym
(default=384 for
QPSK & ½ code

rate)

I Real
#bits/OFDM sym

as per input

Insert
Cyclic Prefix IFFT

Insert
Pilot Tone &

DC Null

Insert
Guard

BPSK,QPSK,
16QAM or

64QAM
Symbol Mapper

Interleaver
I&Q Float
#samples/
OFDM sym

=192

Convolutional
Encoder RandomizerReed Solomon

Encoder

I Real
#bits/OFDM sym
(default=768 for
QPSK & ½ code

rate)

I – In-phase Channel, Q – Quadrature Channel

Sym – Symbol

Float – Real data format

Real – Integer data format
Figure 15. Working transmitter waveform design.

I&Q Float
#samples

depends on
scale factor

(default=0.25)

Digitized I&Q
samples

I&Q Float
#samples/
OFDM sym

= 256

I&Q Float
#samples/
OFDM sym
as per input

I&Q Float
#samples/
OFDM sym

= 247

I Real
#bits/OFDM sym
(default=384 for

QPSK)

I Real
#bits/OFDM sym

as per input

I Real
#bits/OFDM sym
(default=768 for

QPSK & 1/2 code
rate

Remove
Cyclic Prefix FFT

Remove
Pilot Tone &

DC Null

Remove
Guard

BPSK,QPSK
16QAM, 64QAM

Symbol
Demapper

De-
Interleaver

I&Q Float
#samples/
OFDM sym

=192

Convolutional
Decoder
(Viterbi)

De-randomizerReed Solomon
Decoder

I Real
#bits/OFDM sym

as per input

I – In-phase Channel, Q – Quadrature Channel

Sym – Symbol

Float – Real data format

Real – Integer data format

I&Q Float
#samples

depends on
scale factor

(default=0.25)

Digitized I&Q
samples

I&Q Float
#samples/
OFDM sym

= 256

I&Q Float
#samples/
OFDM sym
as per input

I&Q Float
#samples/
OFDM sym

= 247

I Real
#bits/OFDM sym
(default=384 for

QPSK)

I Real
#bits/OFDM sym

as per input

I Real
#bits/OFDM sym
(default=768 for

QPSK & 1/2 code
rate

Remove
Cyclic Prefix FFT

Remove
Pilot Tone &

DC Null

Remove
Guard

BPSK,QPSK
16QAM, 64QAM

Symbol
Demapper

De-
Interleaver

I&Q Float
#samples/
OFDM sym

=192

Convolutional
Decoder
(Viterbi)

De-randomizerReed Solomon
Decoder

I Real
#bits/OFDM sym

as per input

I – In-phase Channel, Q – Quadrature Channel

Sym – Symbol

Float – Real data format

Real – Integer data format
Figure 16. Working receiver waveform design.

31

D. COMPONENT DESIGN
Every component in the software architecture is structured somewhat similarly by

the automatic code generation feature of the OWD. As described in Chapter III,

subsequent modification to customize the auto-generated code to the intended component

function involves only the four C++ files. Figure 17 illustrates the relationship with

respect to the component functionality design between these four files.

<component>.h

<component>.cpp

Process_data ()

port_impl.h

port_impl.cpp

pushPacket

Class
dataIn_<port type>_i

Class
dataOut_<port type>_i

send_data

<component>.h

<component>.cpp

Process_data ()

port_impl.h

port_impl.cpp

pushPacket

Class
dataIn_<port type>_i

Class
dataOut_<port type>_i

send_data

Figure 17. Functional architecture of the OWD auto-generated C++ code.

The function process_data carries out the main component function and is to be

added into the auto-generated code. This is where incoming data from preceding

component is processed before sending it off to the succeeding component. The functions

pushpacket and send_data in the port_impl.cpp file provide the input and output services

for process data.

Several port types are available for use of which four were applicable in the

component design in this thesis. Components with a single channel port interface

transferring data of the type integer i.e., whole numbers only, will use the realShort port

type. If the data is of the type real, the component will use the realFloat port type.

Components with a dual channel port interface transferring data of the type integer i.e.,

whole numbers only, will use the complexShort port type. If the data on each of the two

channel interfaces is of the type real, the component will use the complexFloat port type.

32

33

In SDR design, the dual channel port interfaces facilitate data flow in the In-phase and

Quadrature channels.

1. Transmitter
The fundamental components required in the transmitter waveform are illustrated

in Figure 15. As with the approach of the software development using the Incremental

Development model, the simplest components were developed first and added as

increments to the waveform before moving on to develop more complicated components.

The following sections describe the design of the components within the

transmitter waveform with the exception of the Reed-Solomon Encoder which was not

developed within this thesis work. The component to implement the IFFT was reused and

modified slightly from the one developed by Leong Wai Kiat, who was working on the

IEEE 802.11a implementation using OSSIE for his thesis [22].

a. Randomizer
Component name: randomizer_802_16

Port design: randomizer_802_16 has one input and one output port. Both

ports are of type realShort.

Functional design: Firstly, incoming data to the component shall be

padded up with logic ones at the end of the data block, if it does not fully fit the amount

of data allocated to form an OFDM symbol subsequently which is fixed with two

hundred and fifty-six subcarriers. The amount of data allocated depends on the code rate

and modulation scheme selected for the waveform. This function is embedded in the

pushpacket function in port_impl.cpp. The data shall then be randomized accordingly as

described in Chapter II. The described functions are illustrated in Figure 18.

pushPacket Process_data

Data input

Calculate
size

Allocated size

Calculate
pad size Pad data

Generate
scrambling bit

Initial seed

Data output

pushPacket Process_data

Data input

Calculate
size

Allocated size

Calculate
pad size Pad data

Generate
scrambling bit

Initial seed

Data output

Figure 18. Functional description of component randomizer_802_16.

b. Convolutional Encoder

Component name: CC_encode_802_16

Port design: CC_encode_802_16 has one input and one output port. Both

ports are of type realShort.

Functional design: The data block shall be convolutionally coded as

described in Chapter II, with a rate of 1/2, 2/3, 3/4 or 5/6 corresponding to the selected

waveform profile. The encoder is designed based on a fundamental 1/2 code rate. Higher

rates are derived from it by puncturing the encoded data. The described function is

illustrated in Figure 19.

34

Process_data

Generate
encoding bits

Data input

Data output

Puncture? Rate 2/3,3/4
or 5/6

Puncture
encoded data

Y

N

Process_data

Generate
encoding bits

Data input

Data output

Puncture? Rate 2/3,3/4
or 5/6

Puncture
encoded data

Y

N

Figure 19. Functional description of component CC_encoder_802_16.

c. Interleaver

Component name: interleaver_802_16

Port design: interleaver_802_16 has one input and one output port. Both

ports are of type realShort.

Functional design: The data block shall be interleaved as described in

Chapter II. The interleaver re-arranges the order of the incoming data using two

permutations. The described function is illustrated in Figure 20.

Process_data

First
permutationData input Data outputSecond

permutation

Process_data

First
permutationData input Data outputSecond

permutation

Figure 20. Functional description of component interleaver_802_16.

d. BPSK Symbol Mapper

Component name: bpsk_mod_802_16

Port design: bpsk_mod_802_16 has one input port of type realShort and

one output port of type ComplexFloat.

35

Functional design: The data block shall be BPSK modulated based on the

constellation shown in Chapter II. To be consistent with the format of the other mapping

schemes, two output ports for the In-phase and Quadrature channels are provided for in

the structure although only the In-phase channel is necessary. For this component, the

incoming data will always map to zero on the Quadrature channel. The described

function is illustrated in Figure 21.

Process_data

Map to
I-channelData input I-Data output

Map to
Q-channel

Normalising factor

Q-Data output

Process_data

Map to
I-channelData input I-Data output

Map to
Q-channel

Normalising factor

Q-Data output

Figure 21. Functional description of component bpsk_mod_802_16.

e. QPSK Symbol Mapper

Component name: qpsk_mod_802_16

Port design: qpsk_mod_802_16 has one input port of type realShort and

one output port of type ComplexFloat.

Functional design: The data block shall be QPSK modulated based on the

constellation shown in Chapter II. The described function can be similarly illustrated as

in Figure 21.

f. 16-QAM Symbol Mapper
Component name: QAM16_mod_802_16

Port design: QAM16_mod_802_16 has one input port of type realShort

and one output port of type ComplexFloat.

36

Functional design: The data block shall be 16-QAM modulated based on

the constellation shown in Chapter II. The described function can be similarly illustrated

as in Figure 21.

g. 64-QAM Symbol Mapper
Component name: QAM64_mod_802_16

Port design: QAM64_mod_802_16 has one input port of type realShort

and one output port of type ComplexFloat.

Functional design: The data block shall be 64-QAM modulated based on

the constellation shown in Chapter II. The described function can be similarly illustrated

as in Figure 21.

h. Insert Guard Subcarriers
Component name: guardIns_802_16

Port design: guardIns_802_16 has one input and one output port. Both are

of type ComplexFloat.

Functional design: The data block shall have null data, equivalently

subcarriers, appended to its front and end as described in Chapter II. The described

function is illustrated in Figure 22.

Process_data

Append null
data to the frontI-Data input I-Data output

Q-Data outputQ-Data input

Append null
data to the end

Append null
data to the front

Append null
data to the end

Process_data

Append null
data to the frontI-Data input I-Data output

Q-Data outputQ-Data input

Append null
data to the end

Append null
data to the front

Append null
data to the end

Figure 22. Functional description of component guardIns_802_16.

37

i. Insert Pilot Tone and DC Null Subcarriers

Component name: ptIns_802_16

Port design: ptIns_802_16 has one input and one output port. Both are of

type ComplexFloat.

Functional design: The data block shall have pilot tone and DC null data,

equivalently subcarriers, inserted into prescribed locations of the incoming data block as

described in Chapter II. The values of the pilot tone data are to be determined through a

randomizing function which defers between the uplink and downlink transmission and

has to be pre-selected. The described function is illustrated in Figure 23.

Process_data

Insert pilot tone
into locationsI-Data input I-Data output

Q-Data outputQ-Data input

Insert DC null

Insert pilot tone
into locations

Insert DC null

Generate
scrambling bit Initial seedPilot tonePre-set locations Compute value

(set U/L or D/L)

Process_data

Insert pilot tone
into locationsI-Data input I-Data output

Q-Data outputQ-Data input

Insert DC null

Insert pilot tone
into locations

Insert DC null

Generate
scrambling bit Initial seedPilot tonePre-set locations Compute value

(set U/L or D/L)

Figure 23. Functional description of component ptIns_802_16.

j. Inverse Fast Fourier Transform (IFFT)

Component name: Data_IFFT

Port design: Data_IFFT has one input and one output port. Both are of

type ComplexFloat.

Functional design: It implements the Inverse Fast Fourier Transform for

OFDM modulation. The input data are taken as frequency samples and converted to time

samples using the Decimation-In-Time (DIT) Permutated Input - Natural Output (PINO)

38

IFFT algorithm, which is described by Leong in [22]. The described function is

illustrated in Figure 24 below.

Process_data

Convert to complex
freq samplesI-Data input I-Data output

Q-Data outputQ-Data input

Bit reversal

DIT PINO
IFFTIterate?

Nsym times

End

Y

N

Process_data

Convert to complex
freq samplesI-Data input I-Data output

Q-Data outputQ-Data input

Bit reversal

DIT PINO
IFFTIterate?

Nsym times

End

Y

N

Figure 24. Functional description of component Data_IFFT (After [22]).

k. Insert Cyclic Prefix

Component name: cpIns_802_16

Port design: cpIns_802_16 has one input and one output port. Both are of

type ComplexFloat.

Functional design: The data block shall have a cyclic prefix, equivalently

a block of duplicated subcarriers, appended to its front as described in Chapter II. The

proportion of the data to duplicate and append is to be pre-set. The described function is

illustrated in Figure 25.

39

Process_data

Copy portion of
the end of dataI-Data input I-Data output

Q-Data outputQ-Data input

Append copy to
front of data

Copy portion of
the end of data

Append copy to
front of data

CP factor

Process_data

Copy portion of
the end of dataI-Data input I-Data output

Q-Data outputQ-Data input

Append copy to
front of data

Copy portion of
the end of data

Append copy to
front of data

CP factor

Figure 25. Functional description of component cpIns_802_16.

2. Receiver
The fundamental components required in the receiver waveform are illustrated in

Figure 16. As with the approach of the software development using the Incremental

Development model, the simplest components were developed first, in step with the

associated transmitter component, and added as increments to the waveform before

moving on to develop more complicated components.

The following sections describe the design of the components within the receiver

waveform with the exception of the Reed-Solomon Encoder which was not implemented

within this thesis work. The components to implement the Fast Fourier Transform and

Convolutional decoding were reused and modified slightly from the ones developed by

Leong Wai Kiat who was working on the IEEE 802.11a implementation using OSSIE for

his thesis [22].

a. De-randomizer
Component name: derandomizer_802_16

Port design: derandomizer_802_16 has one input and one output port.

Both ports are of type realShort.

40

Functional design: The incoming scrambled data shall be de-randomized

by applying the same randomizing methodology as described in Chapter II. The

described functions are illustrated in Figure 26.

Process_data

Generate
scrambling bit

Initial seed

Data outputData input

Process_data

Generate
scrambling bit

Initial seed

Data outputData input

Figure 26. Functional description of component derandomizer_802_16.

b. Convolutional Decoder

Component name: DATA_conv_dec

Port design: DATA_conv_dec has one input and one output port. Both are

of type realShort.

Functional design: Viterbi decoding is chosen to decode the deinterleaved

bit streams of convolutional codes. The incoming data have been convolutionally

encoded with a rate of 1/2, 2/3, 3/4 or 5/6. Except in the case of code rate 1/2, dummy

bits are inserted prior to decoding since the higher code rates are derived from the basic

1/2 code rate by puncturing the encoded data at the transmitter. The functional flow is

shown in Figure 27, 28 and 29. [22]

41

Process_data

Data input Recover
punctured data

Insert dummy
‘zero’ accordinglyCode rate

Call
initialise_viterbi()

Call
process_viterbi() Data output

Process_data

Data input Recover
punctured data

Insert dummy
‘zero’ accordinglyCode rate

Call
initialise_viterbi()

Call
process_viterbi() Data output

Figure 27. Functional description of component Data_conv_dec (After

[22]).

initialise_viterbi

_Start Form
current_state

iterate
Nstate=64

times
Convert

INT to BIN

Form
next_state

Shift right by 1 bit
and store 5 bits

Insert bit ‘0’ at LSB

Next
State?

Insert bit ‘1’ at LSBStore 6 bits

0

Shift right by 1 bit
and store 5 bits

1

Bit ‘0’ Bit ‘1’

Form
Encoder output

Next
State?

encoder
polynomial

x
x

Bit ‘0’

Bit ‘1’

initialise_viterbi

_Start Form
current_state

iterate
Nstate=64

times
Convert

INT to BIN

Form
next_state

Shift right by 1 bit
and store 5 bits

Insert bit ‘0’ at LSB

Next
State?

Insert bit ‘1’ at LSBStore 6 bits

0

Shift right by 1 bit
and store 5 bits

1

Bit ‘0’ Bit ‘1’

Form
Encoder output

Next
State?

encoder
polynomial

x
x

Bit ‘0’

Bit ‘1’

Figure 28. Functional description of function initialize_viterbi within

Component Data_conv_dec (From [22]).

42

process_viterbi

Start

Initialize variables

iterate
Niter times

Viterbi
decoding

All memories ‘0’,
Initial state = 1

BUTTERFLY_viterbi()

Memories from
previous block,

initial state
depends

Yes

No

Select decoded
code sequence

Select
puncturing

type

dec_type=1 dec_type=2dec_type=0

R=1/2

R=3/4

R=2/3

Hamming matrix Output tracer State table

Is it 1st block?

If iter= 1,
choose initial stateiterate

Nstate=64
times

Store hamming
distance and move

to next iteration

Find shortest
hamming distance

Select
corresponding

output

process_viterbi

Start

Initialize variables

iterate
Niter times

Viterbi
decoding

All memories ‘0’,
Initial state = 1

BUTTERFLY_viterbi()

Memories from
previous block,

initial state
depends

Yes

No

Select decoded
code sequence

Select
puncturing

type

dec_type=1 dec_type=2dec_type=0

R=1/2

R=3/4

R=2/3

Hamming matrix Output tracer State table

Is it 1st block?

If iter= 1,
choose initial stateiterate

Nstate=64
times

Store hamming
distance and move

to next iteration

Find shortest
hamming distance

Select
corresponding

output

Figure 29. Functional description of function process_viterbi within

component Data_conv_dec (From [22]).

c. De-interleaver

Component name: deinterleaver_802_16

Port design: deinterleaver_802_16 has one input and one output port. Both

ports are of type realShort.

Functional design: The data block shall be de-interleaved as described in

Chapter II. The de-interleaver re-arranges the order of the incoming data using two

permutations. The described function is illustrated in Figure 30.

Process_data

First
permutationData input Data outputSecond

permutation

Process_data

First
permutationData input Data outputSecond

permutation

Figure 30. Functional description of component deinterleaver_802_16.

43

d. BPSK Symbol De-mapper

Component name: bpsk_demod_802_16

Port design: bpsk_demod_802_16 has one input port of type

ComplexFloat and one output port of type realShort.

Functional design: The data block shall be BPSK demodulated based on

the constellation shown on Figure 8 in Chapter II. To be consistent with the format of the

other mapping schemes, two inputs for the In-phase and Quadrature channels are catered

for in the structure although only the In-phase channel is necessary. For this component,

the algorithm will only process data from the In-phase channel. The described function is

illustrated in Figure 31.

Process_data

De-map to
binary bit Data outputI-Data input

Q-Data input

Process_data

De-map to
binary bit Data outputI-Data input

Q-Data input

Figure 31. Functional description of component bpsk_demod_802_16.

e. QPSK Symbol De-mapper

Component name: qpsk_demod_802_16

Port design: qpsk_demod_802_16 has one input port of type

ComplexFloat and one output port of type realShort.

Functional design: The data block shall be QPSK demodulated based on

the constellation shown on Figure 8 in Chapter II. The described function is illustrated as

in Figure 32.

44

Process_data

De-map to
binary bits Data outputI-Data input

Q-Data input De-map to
binary bits

Concatenate

Process_data

De-map to
binary bits Data outputI-Data input

Q-Data input De-map to
binary bits

Concatenate

Figure 32. Functional description of component qpsk_demod_802_16.

f. 16-QAM Symbol De-mapper

Component name: QAM16_demod_802_16

Port design: QAM16_demod_802_16 has one input port of type

ComplexFloat and one output port of type realShort.

Functional design: The data block shall be 16-QAM demodulated based

on the constellation shown on Figure 8 in Chapter II. The described function can be

similarly illustrated as in Figure 32.

g. 64-QAM Symbol De-mapper
Component name: QAM64_demod_802_16

Port design: QAM64_demod_802_16 has one input port of type

ComplexFloat and one output port of type realShort.

Functional design: The data block shall be 64-QAM demodulated based

on the constellation shown in Chapter II. The described function can be similarly

illustrated as in Figure 32.

h. Remove Guard Subcarriers
Component name: guardRem_802_16

45

Port design: guardRem_802_16 has one input and one output port. Both

are of type ComplexFloat.

Functional design: The data block shall have null data, equivalently

subcarriers, removed from its front and end as described in Chapter II. The described

function is illustrated in Figure 33.

Process_data

Remove null
data from the frontI-Data input I-Data output

Q-Data outputQ-Data input

Remove null
data from the end

Rermove null
data from the front

Remove null
data from the end

Process_data

Remove null
data from the frontI-Data input I-Data output

Q-Data outputQ-Data input

Remove null
data from the end

Rermove null
data from the front

Remove null
data from the end

Figure 33. Functional description of component guardRem_802_16.

i. Remove Pilot Tone and DC Null Subcarriers

Component name: ptRem_802_16

Port design: ptRem_802_16 has one input and one output port. Both are of

type ComplexFloat.

Functional design: The data block shall have pilot tone and DC null data,

equivalently subcarriers, removed from prescribed locations of the incoming data block

as described in Chapter II. The described function is illustrated in Figure 34.

46

Process_data

Remove pilot tone
from locationsI-Data input I-Data output

Q-Data outputQ-Data input

Remove DC null

Remove pilot tone
from locations

Remove DC null

Pre-set locations

Process_data

Remove pilot tone
from locationsI-Data input I-Data output

Q-Data outputQ-Data input

Remove DC null

Remove pilot tone
from locations

Remove DC null

Pre-set locations

Figure 34. Functional description of component ptRem_802_16.

j. Fast Fourier Transform (IFFT)

Component name: Data_IFFT

Port design: Data_IFFT has one input and one output port. Both are of

type ComplexFloat.

Functional design: It implements the Fast Fourier Transform for the

OFDM demodulation. The input data are taken as time samples and converted to

frequency samples using the Decimation-In-Time (DIT) Permutated Input - Natural

Output (PINO) FFT algorithm as described by Leong in [22]. The described function is

illustrated in Figure 35. [22]

47

Process_data

Convert to complex
freq samplesI-Data input I-Data output

Q-Data outputQ-Data input

Bit reversal

DIT PINO
FFTIterate?

Nsym times

End

Y

N

Process_data

Convert to complex
freq samplesI-Data input I-Data output

Q-Data outputQ-Data input

Bit reversal

DIT PINO
FFTIterate?

Nsym times

End

Y

N

Figure 35. Functional description of component Data_FFT (After [22]).

k. Remove Cyclic Prefix
Component name: cpRem_802_16

Port design: cpRem_802_16 has one input and output port. Both are of

type ComplexFloat.

Functional design: The data block shall have the cyclic prefix,

equivalently a block of duplicated subcarriers, removed from its front as described in

Chapter II. The proportion of the data to duplicate and append is to be pre-set. The

described function is illustrated in Figure 36.

Process_data

Remove CP
From start of dataI-Data input I-Data output

Q-Data outputQ-Data input Remove CP
From start of data

CP factor

Process_data

Remove CP
From start of dataI-Data input I-Data output

Q-Data outputQ-Data input Remove CP
From start of data

CP factor

Figure 36. Functional description of component cpRem_802_16.

48

49

E. SUMMARY
This chapter presented the process of software development. The Incremental

Development Model was adopted as the approach to develop the software. The

considerations taken for the software development were discussed. The design of the

waveform and components were also explained. The next chapter will present the

software tests and results. For the former, the test methodology will be described. For the

latter, the results with respect to meeting the objectives of the thesis will be presented.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

V. SOFTWARE TESTS AND RESULTS

A. TEST METHODOLOGY
A convenient way of testing the developed software will be to verify the

functionality of the waveform by having it receive an actual external transmission of an

IEEE 802.16-2004 standard signal in the air. However, it was not feasible as there is no

actual hardware interface implementation carried out in this thesis. The waveform was

also not complete given that the Reed-Solomon encoder and decoder were not developed.

In addition, the waveform design for the receiver does not provision for frequency or

phase synchronization, symbol synchronization, fading mitigation and packet detection,

which are necessary functions for a working receiver.

The overall software development approach using the Incremental Development

Model remains the same where software testing is an integral part of each increment

cycle. For each increment cycle, software testing was done first on individual

components before subsequent testing of the incremented waveform. This methodology

is elaborated in Figure 37.

A test case is available in the IEEE 802.16-2004 standard document to validate

the functionality of the individual components. The details of the test case are

summarized in Table 8. The SDR transmitter components were first tested individually

through a simple waveform set-up shown in Figure 38. The results were then verified

against the test case to validate functionality of the component.

Test transmitter
component

against case study

Test associated
receiver component
against transmitter

component

Integrate
components into

waveform

Functional?

Test
incremented

waveform

Troubleshoot
or back to

design phase

Test transmitter
component

against case study

Test associated
receiver component
against transmitter

component

Integrate
components into

waveform

Functional?

Test
incremented

waveform

Troubleshoot
or back to

design phase

Figure 37. Software test methodology.

single_ch_data_gen
or

TxComplexFloat

Transmitter
component

Data Generator
single_ch_RXDemo

or
RxComplexFloat

Data Receiver
single_ch_data_gen

or
TxComplexFloat

Transmitter
component

Data Generator
single_ch_RXDemo

or
RxComplexFloat

Data Receiver

Figure 38. Set-up for testing a transmitter component.

In the simple waveform set-up for component testing, the single_ch_data_gen

component was created to output a single-channel binary sequence. The TxComplexFloat

component was created to output dual-channel data in real-numbered format. The

single_ch_RXDemo component was created to receive a single-channel binary sequence.

The received data was then written into a text file named single_ch_RXDemo.txt for

analysis and verification against the test case. The RxComplexFloat component was

created to receive dual-channel data in real-numbered format. Similarly, the received data

was written into a text file named RxComplexFloat.txt. Depending on the type of data

the component under test is required to receive and transmit, the appropriate data

generator and receiver would be deployed accordingly.

52

Having successfully tested the transmitter component and had its functionality

validated against the test case, the corresponding receiver component would then be

tested against this transmitter component. The functionality of the receiver component

was validated by verifying that the data, ported to a text file, received by the data receiver

was the same as that sent out by the data generator. An example of this set-up is shown in

Figure 39.

single_ch_data_gen Interleaver
component

Data Generator

single_ch_RXDemo

Data Receiver

De-interleaver
component

realShort realShort
single_ch_data_gen Interleaver

component

Data Generator

single_ch_RXDemo

Data Receiver

De-interleaver
component

realShort realShort

Figure 39. An example of set-up for testing a receiver component.

Following the successful tests of the transmitter and corresponding receiver

components, they would then be integrated into the waveform as increments and were

tested as a waveform. An example of this set-up is shown in Figure 40.

single_ch_data_gen Randomizer
component

Data Generator

single_ch_RXDemo

Data Receiver

De-randomizer
component

realShort

realShort

Interleaver
component

QPSK
Symbol Mapper

component

De-interleaver
component

QPSK
Symbol De-mapper

component

realShort realShort complexFloat

realShort realShort

single_ch_data_gen Randomizer
component

Data Generator

single_ch_RXDemo

Data Receiver

De-randomizer
component

realShort

realShort

Interleaver
component

QPSK
Symbol Mapper

component

De-interleaver
component

QPSK
Symbol De-mapper

component

realShort realShort complexFloat

realShort realShort

Figure 40. An example of set-up for testing an incremented waveform.

53

45 29 C4 79 AD 0F 55 28 AD 87 B5 76 1A 9C 80 50 45 1B 9F D9 2A 88 95 EB AE B5 2E 03 4F 09
14 69 58 0A 5D
D4 BA A1 12 F2 74 96 30 27 D4 88 9C 96 E3 A9 52 B3 15 AB FD 92 53 07 32 C0 62 48 F0 19 22
E0 91 62 1A C1
49 31 40 BF D4 BA A1 12 F2 74 96 30 27 D4 88 9C 96 E3 A9 52 B3 15 AB FD 92 53 07 32 C0 62
48 F0 19 22 E0 91 62 1A C1 00
3A 5E E7 AE 49 9E 6F 1C 6F C1 28 BC BD AB 57 CD BC CD E3 A7 92 CA 92 C2 4D BC 8D 78
32 FB BF DF 23 ED 8A 94 16 27 A5 65 CF 7D 16 7A 45 B8 09 CC
77 FA 4F 17 4E 3E E6 70 E8 CD 3F 76 90 C4 2C DB F9 B7 FB 43 6C F1 9A BD ED 0A 1C D8 1B
EC 9B 30 15 BA DA 31 F5 50 49 7D 56 ED B4 88 CC 72 FC 5C
-100: 1 -1, -99: -1 -1, -98: 1 -1, -97: -1 -1, -96: -1 -1, -95: -1 -1, -94: -1 1, -93: -1 1, -92: 1 -1, -91: 1
1, -90: -1 -1, -89: -1 -1, -88:pilot= 1 0, -87: 1 1, -86: 1 -1, -85: 1 -1, -84: -1 -1, -83: 1 -1, -82: 1 1, -81:
-1 -1, -80: -1 1, -79: 1 1, -78: -1 -1, -77: -1 -1, -76: -1 1, -75: -1 -1, -74: -1 1, -73: 1 -1, -72: -1 1, -71:
1 -1, -70: -1 -1, -69: 1 1, -68: 1 1, -67: -1 -1, -66: -1 1, -65: -1 1, -64: 1 1, -63:pilot= -1 0, -62: -1 -1, -
61: 1 1, -60: -1 -1, -59: 1 -1, -58: 1 1, -57: -1 -1, -56: -1 -1, -55: -1 -1, -54: 1 -1, -53: -1 -1, -52: 1 -1,
-51: -1 1, -50: -1 1, -49: 1 -1, -48: 1 1, -47: 1 1, -46: -1 -1, -45: 1 1, -44: 1 -1, -43: 1 1, -42: 1 1,
-41: -1 1, -40: -1 -1, -39: 1 1, -38:pilot= 1 0, -37: -1 -1, -36: 1 -1, -35: -1 1, -34: -1 -1, -33: -1 -1, -32:
-1 -1, -31: -1 1, -30: 1 -1, -29: -1 1, -28: -1 -1, -27: 1 -1, -26: -1 -1, -25: -1 -1, -24: -1 -1, -23: -1 1,
-22: -1 -1, -21: 1 -1, -20: 1 1, -19: 1 1, -18: -1 -1, -17: 1 -1, -16: -1 1, -15: -1 -1, -14: 1 1, -13:pilot= -
1 0, -12: -1 -1, -11: -1 -1, -10: 1 1, -9: 1 -1, -8: -1 1, -7: 1 -1, -6: -1 1, -5: -1 1, -4: -1 1, -3: -1 -1, -2: -
1 -1, -1: 1 -1, 0: 0 0, 1: -1 -1, 2: -1 1, 3: -1 -1, 4: 1 -1, 5: 1 1, 6: 1 1, 7: -1 1, 8: -1 1, 9: 1 1, 10: 1 -1,
11: -1 -1, 12: 1 1, 13:pilot= 1 0, 14: -1 -1, 15: 1 -1, 16: -1 1, 17: 1 1, 18: 1 1, 19: 1 -1, 20: -1 1, 21: -1
-1, 22: -1 -1, 23: -1 1, 24: -1 -1, 25: 1 1, 26: -1 1, 27: 1 -1, 28: -1 1, 29: -1 -1, 30: 1 1, 31: -1 -1, 32: 1
1, 33: 1 1, 34: 1 1, 35: 1 -1, 36: 1 -1, 37: 1 -1, 38:pilot= 1 0, 39: -1 1, 40: -1 -1, 41: -1 1, 42: -1 1, 43:
-1 -1, 44: 1 -1, 45: -1 1, 46: -1 1, 47: 1 1, 48: -1 -1, 49: 1 1, 50: 1 -1, 51: -1 -1, 52: -1 -1, 53: 1 -1, 54:
1 -1, 55: 1 -1, 56: 1 -1, 57: 1 1, 58: 1 1, 59: 1 -1, 60: 1 1, 61: -1 1, 62: 1 -1, 63:pilot= 1 0, 64: 1 -1, 65:
-1 -1, 66: -1 -1, 67: 1 -1, 68: 1 -1, 69: 1 -1, 70: 1 -1, 71: -1 1, 72: -1 -1, 73: -1 1, 74: -1 -1, 75: 1 -1,
76: -1 1, 77: -1 -1, 78: 1 -1, 79: 1 1, 80: -1 1, 81: 1 1, 82: -1 1, 83: 1 1, 84: -1 -1, 85: 1 1, 86: -1 -1, 87:
1 1, 88:pilot= 1 0, 89: 1 -1, 90: -1 -1, 91: 1 1, 92: -1 1, 93: -1 -1, 94: -1 -1, 95: -1 -1, 96: 1 1, 97: 1 -1,
98: 1 -1, 99: -1 -1, 100: 1 1

* Note that the above QPSK values (all values with exception of the BPSK pilots) are to be normalized with a factor 1/ 2

One burst of OFDM uplink data. Modulation mode: QPSK, rate 3/4

Subcarrier Mapping
(frequency offset index:
I value Q value)

Interleaved Data (Hex)

Interleaved Data (Hex)

Input Data (Hex)

Randomized Data
(Hex)
Reed-Solomon
Encoded Data (Hex)
Convolutionally
Encoded Data (Hex)

 √

Table 8. An example of an IEEE 802.16 test case (From [10]).

B. RESULTS
This section presents the results of the thesis work with respect to the goals of the

thesis which can be categorized into two aspects of the developed software functionality

and reusability.

1. Functionality
The test methodology described above in Section A serves to validate the

functionality of the individual components. All transmitter and receiver components

required to build the waveform compliant to the physical layer of the IEEE 802.16

WirelessMAN-OFDMTM, except the Reed-Solomon encoder and decoder, were tested

and had their functionality validated successfully.

54

55

2. Reusability and Reconfigurability
Reusability is an important trait of the software since the developed components

are to be contributed to a shared library for future use. Closely related to reusability of

components is the trait of reconfigurability of waveforms. These considerations for the

software design have been elaborated upon in Chapter IV. The SDR components

developed in this thesis were designed with a strong emphasis on reusability and

reconfigurability. The following describes the features incorporated into the design of the

components that strive to achieve these traits.

a. Documentation
Proper commentary was inserted in all the source code for the software.

The commentary shall serve to explain in further detail the workings of the software

algorithm. It also differentiates portions of the code which were manually modified or

inserted from those that were automatically generated by the OWD. These commentaries

will be useful as reference for future modifications and adaptations.

In addition, for every SDR component, a description file was created that

details the general parameters relevant to understanding the structural design of the

component. This information will be useful as a help reference to assist in deploying the

component in the OWD for the building of any waveform. In other words, no

foreknowledge of the design of the components in the library is necessary to still be able

to select and deploy appropriately the library components in order to build any waveform

effectively. The description file is a text file stored in the component folder in the OS file

system. An example of a description file is shown in Figure 41.

Figure 41. An example of a SDR component description file.

b. Naming Convention
As much as it is desired for the SDR components to be generic and

elementary such that they are applicable for building all kinds of waveform profiles,

fundamental attribute differences between waveform requirements may dictate otherwise.

For example, the constellation for the IEEE 802.16-2004 standard is different from that

specified in the IEEE 802.11a standard. This dictates that there cannot be a generic

symbol mapping component that can satisfy the requirements of both standards without

having to change some parameters which means having to recompile the component each

56

57

time it is used differently. This inconvenience of having to recompile the component may

be circumvented by having a control port interface, in addition to the standard data port

interface, which detects this parameter change. However, this structural design of the

component may inadvertently complicate the whole waveform design since it is expected

that the standard communication signal does not cater for such a parameter change i.e.,

provision for differentiation of the communications standard. The control signal that

triggers the parameter change within the component will then have to be internally

generated within the waveform thus complicating the design.

It would be more feasible to allow in the library, where applicable,

multiple components of the same function but different attributes. For example, there can

be a BPSK symbol mapper compliant to the IEEE 802.16-2004 standard and another

compliant to the IEEE 802.11a. This will alleviate the need to change parameters and

recompile the component as well as maintain the components in their elementary

functional structure. Therefore, the naming convention of the components is important to

differentiate the components accordingly in the library. For example, the BPSK symbol

mapper compliant to the IEEE 802.16-2004 standard has been named bpsk_mod_802_16

whereas another compliant to the IEEE 802.11a may be named bpsk_mod_802_11a.

c. Dynamic Data Size

In OSSIE, the data flow between components is in terms of packets. The

size of the packet varies according to the waveform signal profile. For example, in the

IEEE 802.16 WirelessMAN-OFDMTM standard, data flow is in terms of an OFDM

symbol which comprises of 256 subcarriers. For the IEEE 802.11a standard, an OFDM

signal comprises only of 64 subcarriers.

As described above, having to recompile a component due to parameter

change to suit different waveform profile requirements does not align well with the trait

of component reusability. Therefore, it is important that the components be designed with

a dynamic ability to receive and handle different data sizes.

<component>.h

<component>.cpp

Process_data ()

port_impl.h

port_impl.cpp

pushPacket

Class
dataIn_realShort_i

Incoming external data

bufferI

I

<component>.h

<component>.cpp

Process_data ()

port_impl.h

port_impl.cpp

pushPacket

Class
dataIn_realShort_i

Incoming external data

bufferI

I

Figure 42. An example of data handling within a component.

Figure 42 above shows how OSSIE sets up the component structural

design to handle an incoming data packet. The data packet is first received by the

function pushpacket which accesses the data from a common buffer used for data transfer

throughout the waveform. Once fully accessed, this data is then copied onto an interim

buffer for data processing within the component. As such, the size of the data to be

handled by the component can be ascertained during the operation within pushpacket,

and initialized for subsequent processing by process_data.

d. Elementary Functional Design
As described in Chapter IV, the SDR components were designed to have a

single elementary function. This feature enables the components to serve as basic

building blocks in building any waveform. For example, instead of developing a symbol

mapper component that encompasses functions of BPSK, QPSK, 16-QAM and 64-QAM,

four separate components were developed that each embodies a single function. In the

former design, the inconveniences that will be incurred in using the component were

described above under the section on the importance of the component naming

convention. The latter design will enhance reusability of the components and

reconfigurability of the waveform. This design will also be very useful for waveforms

that support multi-mode operations which will be elaborated in greater detail below in

Chapter VI.

58

59

e. Generic Port Interface Structure
The component design restricted the port interfaces of each component to

be kept simple and elementary and only data port interfaces were used. Having additional

control data interfaces will incur complexity in waveform design as described above

under the section on the importance of the component naming convention. Keeping port

interfaces simple and generic is important in ensuring reusability of the component and

reconfigurability of the waveform. This can be illustrated in a waveform set up for multi-

mode operation which is elaborated in greater detail below in Chapter VI.

C. SUMMARY
This chapter presented the software test methodology and the results with respect

to meeting the thesis objectives. All the transmitter and receiver components required to

build the waveform compliant to the physical layer of the IEEE 802.16 WirelessMAN-

OFDMTM, except the Reed-Solomon encoder and decoder, were tested and validated

successfully. Several features were incorporated into the component design to good

reusability of the components. These features include having good documentation, a

useful component naming convention, dynamic data size handling capability, a simple

functional design and generic port interfaces. The next chapter will present additional

design work which focuses on a suggested architecture that allows multi-mode operations

without compromising the reusability of the components. An experiment to design and

test the architecture will be presented and results explained.

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

VI. ADDITIONAL WORK

Although developing a fully operational receiver based on the IEEE 802.16-2004

standard was not attempted in this thesis, the work does include a suggested architecture

to achieve multi-mode operations. In this chapter, the suggested architecture is described

on. An experiment to design and test the architecture will be presented and results

explained.

In today’s data communication standards, it is common to provision for multi-

mode operations. This is especially so for wireless communication where different modes

have to be catered for in meeting dynamic channel characteristics. For example, in the

IEEE 802.16 WirelessMan-OFDMTM standard, twenty different burst profiles are

provisioned for [10]. These profiles consist of different combinations of modulation type

and error correction coding scheme and rate. Control information in the header within a

frame tells the receiver which burst profile to adopt to receive the following data bursts

within the frame.

A waveform design that will meet such provision requirements can be

complicated. A convenient way is to custom-build components that will take on different

functions given a parameter change. However, components built in such a way will not

be very reusable since it is customized for a particular type of waveform.

A. MULTI-MODE OPERATIONS WAVEFORM DESIGN
In this thesis, a waveform design was experimented with to cater to multi-mode

operations despite using simple and reusable components. This design is shown in Figure

43. Component 1a, 1b and 1c can be separate components of the same function but of

different attributes. For example, Component 1a may be a BPSK symbol mapper while

Component 1b may be a QPSK symbol mapper.

In OSSIE, a component designated as an Assembly Controller will trigger the

start of the waveform operations. The Selector component, designated as the Assembly

Controller, will first trigger the Data Generator to send the first or the next data packet,

regardless of size since all the components shall be designed with dynamic data size

handling ability. Upon receiving the data packet from the Data Generator, the Selector

shall proceed to check the control information received from the Receiver. In the case the

data received from the Data Generator is the first, no control information will be

available from the Receiver. This also indicates that this data packet contains the header

information required to select which profile to adopt to receive subsequent data packets.

Meanwhile, the Selector will output the first data packet, containing the header

information, to a default profile by sending it to the appropriate output interface port.

This data packet will then be processed accordingly until the relevant header information

is being extracted by the Receiver and then relayed back to the Selector through the

control port interface. The whole cycle then repeats until the end of data transmission.

ReceiverData
Generator D

at
a

O
ut

Control In

Component
1aD

at
a

In

D
at

a
O

ut

Component
1bD

at
a

In

D
at

a
O

ut

Component
1cD

at
a

In

D
at

a
O

ut

Selector*

D
at

a
In

Control Out

Control In

D
at

a
O

ut

Control Out

D
at

a
In

Component
5aD

at
a

In

D
at

a
O

ut
Component

5bD
at

a
In

D
at

a
O

ut

Component
5cD

at
a

In

D
at

a
O

ut

….

….

….*Assembly Controller

…
.

…
.

ReceiverData
Generator D

at
a

O
ut

Control In

Component
1aD

at
a

In

D
at

a
O

ut

Component
1bD

at
a

In

D
at

a
O

ut

Component
1cD

at
a

In

D
at

a
O

ut

Selector*

D
at

a
In

Control Out

Control In

D
at

a
O

ut

Control Out

D
at

a
In

Component
5aD

at
a

In

D
at

a
O

ut
Component

5bD
at

a
In

D
at

a
O

ut

Component
5cD

at
a

In

D
at

a
O

ut

….

….

….*Assembly Controller

ReceiverData
Generator D

at
a

O
ut

Control In

Component
1aD

at
a

In

D
at

a
O

ut

Component
1bD

at
a

In

D
at

a
O

ut

Component
1cD

at
a

In

D
at

a
O

ut

Selector*

D
at

a
In

Control Out

Control In

D
at

a
O

ut

Control Out

D
at

a
In

Component
5aD

at
a

In

D
at

a
O

ut
Component

5bD
at

a
In

D
at

a
O

ut

Component
5cD

at
a

In

D
at

a
O

ut

….

….

….

ReceiverData
Generator D

at
a

O
ut

Control In

Component
1aD

at
a

In

D
at

a
O

ut

Component
1aD

at
a

In

D
at

a
O

ut

Component
1bD

at
a

In

D
at

a
O

utComponent
1bD

at
a

In

D
at

a
O

ut

Component
1cD

at
a

In

D
at

a
O

utComponent
1cD

at
a

In

D
at

a
O

ut

Selector*

D
at

a
In

Control Out

Control In

D
at

a
O

ut

Selector*

D
at

a
In

Control Out

Control In

D
at

a
O

ut

Control Out

D
at

a
In

Component
5aD

at
a

In

D
at

a
O

ut

Component
5aD

at
a

In

D
at

a
O

ut
Component

5bD
at

a
In

D
at

a
O

utComponent
5bD

at
a

In

D
at

a
O

ut

Component
5cD

at
a

In

D
at

a
O

utComponent
5cD

at
a

In

D
at

a
O

ut

….

….

….*Assembly Controller

…
.

…
.

Figure 43. Conceptual waveform design for multi-mode operations.

A working model shown in Figure 44 was constructed and tested. The

components Profile 1, 2 and 3 were created to represent waveforms of different profiles.

In real implementation, components Profile 1, 2 and 3 could be a series of simple and

reusable components.

62

B. MULTI-MODE OPERATIONS COMPONENT DESIGN
The key components in this waveform set-up for experimentation are the Selector

and Receiver. The port interface structure of the individual components are illustrated in

Figure 44. All port interfaces are of type realShort.

Components Profile 1, 2 and 3 were created as dummies that did no actual

processing work since it would not have contributed to the goal of the experimentation.

The only significant role of these components was to flag their respective profile name

when data was passing through them. This was so the data flow through the waveform

could be tracked and verified if the correct profile was selected.

The Data Generator, named single_ch_data_gen_FB, serves to output a packet of

the binary data stream only upon receiving the control signal from the Selector.

ReceiverData
Generator D

at
a

O
ut

Control In

Profile 1D
at

a
In

D
at

a
O

ut

Profile 2

D
at

a
In

D
at

a
O

ut

Profile 3

D
at

a
In

D
at

a
O

ut

Selector*

D
at

a
In

Control Out

Control In

D
at

a
O

ut

Control Out

D
at

a
In

*Assembly Controller

ReceiverData
Generator D

at
a

O
ut

Control In

Profile 1D
at

a
In

D
at

a
O

ut
Profile 1D

at
a

In

D
at

a
O

ut

Profile 2

D
at

a
In

D
at

a
O

ut

Profile 2

D
at

a
In

D
at

a
O

ut

Profile 3

D
at

a
In

D
at

a
O

ut

Profile 3

D
at

a
In

D
at

a
O

ut

Selector*

D
at

a
In

Control Out

Control In

D
at

a
O

ut

Selector*

D
at

a
In

Control Out

Control In

D
at

a
O

ut

Control Out

D
at

a
In

*Assembly Controller

Figure 44. Working model of a multi-mode operations waveform.

The Selector, named SelectorReal_3Out, is designed as an Assembly Controller

which means it possesses a function to initiate waveform activation. In this case, it does

63

so by sending a control signal to trigger the Data Generator’s function. The Selector then

waits for the data input from the Data Generator. Upon receiving the data packet, it then

checks its input control information received from the Receiver. This information is

necessary to help the Selector decide to which data port interface to channel the data

packet. If there is no control signal available yet, the Selector will then proceed to

channel the data packet to a default output port interface, corresponding to the lowest

data rate mode, i.e. BPSK modulation with a rate 1/2 convolutional code. The functional

description of the Selector is illustrated in Figure 45.

It should be noted that although OSSIE 0.5.0 allows multiple input port interface

of the same type, they share a common buffer as explained in Chapter IV. In this case, the

control and data input port interfaces of the Selector are of the same port type realShort.

It was thus important in the design of the component that data stored in this common

buffer are read before being overwritten by another.

Process_data ()

Data
received?

Wait

Initiate
trigger Control info

available?

Send data
to port 2

Control info
= port 0?

Control info
= port 1?

Send data
to port 0

Control info
= port 1?

Send data
to port 1

Process_data ()

Data
received?

Wait

Initiate
trigger Control info

available?

Send data
to port 2

Control info
= port 0?

Control info
= port 1?

Send data
to port 0

Control info
= port 1?

Send data
to port 1

Figure 45. Functional Description of SelectorReal_3Out.

64

65

The Receiver’s main function is to receive a data packet and extract the header

information whose location on the data stream is pre-known. It then feeds this header

information back to the Selector.

C. TESTS AND RESULTS
In this experimentation, the main purpose is to test the synchronization of the

signal flow among the components which is critical to rendering the design feasible for

multi-mode operations.

The waveform was constructed in OWD based on the working model shown in

Figure 44. Data received at each component was displayed for analysis and verification

that the signal flow was according to intentions. A script of the test results is shown in

Figure 46. It clearly shows that the waveform was performing as intended.

This experiment demonstrated that multi-mode operations within a waveform is

feasible without compromising the reusability of the components. The waveform can be

reconfigured with different profiles easily.

Figure 46. Script of test results for a multi-mode operations capable

waveform.

D. SUMMARY

66

This chapter presented the additional thesis design work which focused on a

suggested architecture that allows multi-mode operations without compromising the

reusability of the components. An experiment to design and test the architecture was

67

presented and results shown which demonstrated that the suggested architecture was able

to achieve the intended goal. The next chapter will present the final thesis conclusions

and recommendations for future works.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
The objectives of this thesis were two-fold. The first was to design and

implement, using OSSIE, software defined radio transmitter and receiver components

based on the IEEE 802.16 WirelessMAN-OFDMTM standard. The second objective was

to ensure the developed components, to be contributed to the library, will be flexible and

useful for building other transceivers .

In this thesis, all the components specified in the physical layer of the IEEE

802.16 WirelessMAN-OFDMTM standard were developed successfully except the Reed-

Solomon encoder and decoder. In addition to the validated functionality, the components

were developed with good reusability that will also serve to enhance reconfigurability of

waveforms.

 Additional work in this thesis includes successful experimentation with a

suggested architectural design that accommodates simple and elementary components in

a reconfigurable waveform that supports multi-mode operations.

B. RECOMMENDATIONS FOR FUTURE WORK
The software components developed in this thesis and the successful results of

experimentation with a multi-mode operations waveform design serve as a baseline to

implement a fully functional IEEE 802.16 WirelessMAN-OFDMTM transceiver.

Additional software components to be developed include the Reed-Solomon encoder and

decoder, the waveform profile selector and the receiver at the end of the waveform as

well as components to handle frequency and phase synchronization, packet detection,

ranging, power control, symbol synchronization and mitigation of fading [10].

Components are needed also to interface the waveform with the RF front-end

implemented in hardware.

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

LIST OF REFERENCES

[1] SDR forum, “What is Software Defined Radio?”, http://www.sdrforum.org/pages/
aboutTheForum/faqs.asp, Retrieved October 2006.

[2] J.H. Reed, “Software Radio: A Modern Approach to Radio Engineering”, 1st edition
New Jersey: Prentice Hall, 2002.

[3] P.G. Cook and W. Bonser, “Architectural Overview of the SPEAKeasy System”,
IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, April 1999.

[4] Space and Naval Warfare Systems Command, “JTRS Overview”,
http://enterprise.spawar.navy.mil/body.cfm?type=c&category=27&subcat=60, Retrieved
October 2006.

[5] WIKIPEDIA The Free Encyclopedia, “Software-defined radio”,
http://en.wikipedia.org/wiki/Software-defined_radio#Joint_Tactical_Radio_System_.
28JTRS.29, Retrieved October 2006.

[6] WIKIPEDIA The Free Encyclopedia, “Joint Tactical Radio System”,
http://en.wikipedia.org/wiki/Joint_Tactical_Radio_System, Retrieved October 2006.

[7] Software Defined Radio (SDR) with OSSIE Open Source SCA,
http://ossie.mprg.org/, Retrieved October 2006.

[8] Joseph Mitola, III, “Software Radio Architecture: Object Oriented Approaches to
Wireless Systems Engineering”, John Wiley and Sons, 2000.

[9] Joseph Mitola, “The Software Radio Architecture.” IEEE Communications
Magazine, vol 33, issue 5, May 1995, pg 26-27.

[10] LAN/MAN Standards Committee of the IEEE Computer Society and the IEEE
Microwave Theory and Techniques Society, “IEEE Std 802.16TM-2004, IEEE Standard
for Local and metropolitan area networks - Part 16: Air Interface for Fixed Broadband
Wireless Access Systems”, October 2004.

[11] Todor Cooklev, “Wireless Communication Standards: A Study of IEEE 802.11TM,
802.15TM, and 802.16TM”, chapter 4, IEEE Press Publications, August 2004.

[12] The IEEE 802.16 Working Group on Broadband Wireless Access Standards,
“Background Information on IEEE 802.16”,
http://grouper.ieee.org/groups/802/16/pub/backgrounder.html, Retrieved October 2006.

[13] WIKIPEDIA The Free Encyclopedia, “IEEE 802.16”,
http://en.wikipedia.org/wiki/IEEE_802.16, Retrieved October 2006.

72

[14] G.Abowd, R.Allen and D.Garlan, “Using Style to Understand Descriptions of
Software Architecture”, Proceedings of SIGSOFT’93: Symposium on the Foundation of
Software Engineering, December 1993.

[15] JTRS Overview website, http://www.jtrs.saalt.army.mil/overview, Retrieved
October 2006.

[16] Modular Software-programmable Radio Consortium, “Software Communications
Architecture Specification”, MSRC-5000SCA, version 2.2, November 2001.

[17] Joint Tactical Radio System (JTRS) Joint Program Office, “Software
Communications Architecture Specifications”, 2nd edition, April 2004.

[18] Sabri Murat Biçer, “A Software Communications Architecture Compliant Software
Defined Radio Implementation”, Master’s Thesis, Northeastern University, June 2002.

[19] WIKIPEDIA The Free Encyclopedia, “Common Object Request Broker
Architecture”,http://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architectu
re, Retrieved October 2006.

[20] Jacob A. DePriest, “A Practical Approach to Rapid Prototyping of SCA
Waveforms”, Master’s Thesis, Virginia Polytechnic Institute and State University, April
2006.

[21] WIKIPEDIA The Free Encyclopedia, “Iterative and incremental development”,
http://en.wikipedia.org/wiki/Iterative_and_incremental_development, Retrieved October
2006.

[22] Leong Wai Kiat, “Software Communications Architecture (SCA) Compliant
Software Defined Radio Design for IEEE 802.11a Transceiver”, Master’s Thesis, Naval
Postgraduate School, December 2006.

[23] Andrew S. Tanenbaum, “Modern Operating Systems”, 2nd edition, New Jersey:
Prentice Hall, 2001.

73

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Jeffrey Knorr, Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Assistant Professor Frank Kragh
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

5. Professor Clark Robertson
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

6. Professor Charles W.Bostian

Virginia Polytechnic Institute and State University
 Blacksburg, VA

7. Professor Jeffrey H. Reed

Virginia Polytechnic Institute and State University
 Blacksburg, VA

8. Professor Carl Dietrich

Virginia Polytechnic Institute and State University
 Blacksburg, VA

9. Mr Nathan Beltz

SPAWAR Systems Center
San Diego, CA

10. Mr Howard Pace
JTRS Joint Program Executive Office

 San Diego, CA

74

11. Dr Richard North
JTRS Joint Program Executive Office

 San Diego, CA

12. Ms Donna Miller
 Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, CA

13. MAJ Low Kian Wai
Ministry of Defence
Singapore

